Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Based on the first-principles method of density functional theory and the transition state theory, the adsorption, occupancy and diffusion behaviors of H atoms in LaFeO3(010) surface with O vacancy are investigated. It is found that, for the LaFeO3(010) surface with O vacancy, the H atom prefers to adsorb on the O atom and also could adsorb on the Fe atom; the adsorption energy of H atom in the surface layer is the biggest, while the adsorption energy decreases with the H atom in-depth diffusion to the bulk; the diffusion of H atoms from the surface layer to the bulk phase is a process of progressive rotation around the O atom, and the stepwise diffusion is more likely to occur than the direct diffusion. If the H atom can cross the barrier and diffuse from the surface to the subsurface, it will be more likely to diffuse inward. The presence of O vacancy can reduce the barrier for H atoms diffusion from the surface to the subsurface, and then improve the diffusion properties of the LaFeO3(010) surface system.
In this study, LaFeO3/ZnIn2S4 composites were synthesized via in situ synthesis. The composition, structure and optical absorption properties of LaFeO3/ZnIn2S4 were characterized by X-ray diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy, fluorescence spectroscopy (PL), Fourier Transform infrared spectroscopy (FT-IR) and field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The photocatalytic activity of the LaFeO3/ZnIn2S4 photocatalyst was determined based on the degradation of methyl orange (MO). LaFeO3/ZnIn2S4 composites showed much better photocatalytic performance compared with pure LaFeO3 and ZnIn2S4. The enhanced photocatalytic performance was attributed to intimately contacted interfaces and charge transfer channels which can effectively transfer and separate the photogenerated charge carriers.
A single-crystalline, crack-free, epitaxial (100)cLaFeO3 films were in situ grown by pulsed laser deposition on (100) SrTiO3 substrates. X-ray diffraction, atomic force microscopy and transmission electron microscopy reveal that the LaFeO3 films have high crystalline quality, a very smooth surface, and an atomically sharp LaFeO3/SrTiO3 interface. The magnetic properties of the LaFeO3 films were obtained by a superconducting quantum interference device magnetometry. The saturated magnetization and coercive field of LaFeO3 films are 14 emu/cm3 and 600 Oe, respectively.