World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The adsorption and diffusion theoretical investigations of H on LaFeO3(010) surface with an O vacancy

    https://doi.org/10.1142/S0129183118501279Cited by:2 (Source: Crossref)

    Based on the first-principles method of density functional theory and the transition state theory, the adsorption, occupancy and diffusion behaviors of H atoms in LaFeO3(010) surface with O vacancy are investigated. It is found that, for the LaFeO3(010) surface with O vacancy, the H atom prefers to adsorb on the O atom and also could adsorb on the Fe atom; the adsorption energy of H atom in the surface layer is the biggest, while the adsorption energy decreases with the H atom in-depth diffusion to the bulk; the diffusion of H atoms from the surface layer to the bulk phase is a process of progressive rotation around the O atom, and the stepwise diffusion is more likely to occur than the direct diffusion. If the H atom can cross the barrier and diffuse from the surface to the subsurface, it will be more likely to diffuse inward. The presence of O vacancy can reduce the barrier for H atoms diffusion from the surface to the subsurface, and then improve the diffusion properties of the LaFeO3(010) surface system.

    PACS: 68.43.Bc, 68.43.Jk
    You currently do not have access to the full text article.

    Recommend the journal to your library today!