World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Nanoarchitectonics of AgBr/4A Zeolite Composites with Enhanced Photocatalytic Properties Under Visible Light

    https://doi.org/10.1142/S1793292022500163Cited by:0 (Source: Crossref)

    AgBr/zeolite photocatalysts with different mass ratios were synthesized by depositing AgBr on the surface of 4A zeolite via the one-step precipitation method. AgBr/zeolite with mass ratios of 1:1 exhibited the highest photocatalytic activity, resulting in the complete degradation of the methyl orange (MO) dye under visible-light irradiation for 30min. The photocatalysts were characterized by N2 adsorption–desorption, scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–Vis diffused reflectance spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. The AgBr particles around 4A zeolite were smaller than pure AgBr. The specific surface area of 1:1 AgBr/zeolite was much larger than that of pure AgBr, which indicates that 1:1 AgBr/zeolite possessed more active sites. The photocatalytic stability of 1:1 AgBr/zeolite was investigated, and MO degradation rate of 90.4% was achieved after five cycling runs. The trapping experiments showed that hydroxyl radical (OH), superoxide radical (O2), and hole (h+) were the reactive species responsible for removing MO, and h+ played a key role in MO removal. A possible reaction mechanism in AgBr/zeolite photocatalytic system for MO degradation was proposed.