World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Recent advances in fluorescence-based in vivo flow cytometry

    https://doi.org/10.1142/S1793545819300088Cited by:4 (Source: Crossref)

    The fluorescence-based in vivo flow cytometry (IVFC) is an emerging tool to monitor circulating cells in vivo. As a noninvasive and real-time diagnostic technology, the fluorescence-based IVFC allows long-term monitoring of circulating cells without changing their native biological environment. It has been applied for various biological applications (e.g., monitoring circulating tumor cells). In this work, we will review our recent works on fluorescence-based IVFC. The operation principle and typical biological applications will be introduced. In addition, the recent advances in IVFC flow cytometry based on photoacoustic effects and other label-free detection methods such as imaging-based methods, diffuse-light methods, hybrid multimodality methods and multispectral methods are also summarized.

    References

    • 1. R. C. Leif, Practical Flow Cytometry, M. HowardM. D. Shapiro, (eds.), 3rd edition (Wiley-Liss, Inc, New York, NY, USA, 2010), pp. 490โ€“491. Google Scholar
    • 2. J. L. Haynes, โ€œPrinciples of flow cytometry,โ€ J. Soc. Anal. Cytol. 3(S3), 7 (1988). Google Scholar
    • 3. M. Brown, C. Wittwer, โ€œFlow cytometry: Principles and clinical applications in hematology,โ€ Clin. Chem. 46(8), 1221โ€“1229 (2000). Google Scholar
    • 4. J. Novak, I. Georgakoudi, X. Wei et al., โ€œIn vivo flow cytometer for real-time detection and quantification of circulating cells,โ€ Opt. Let. 29(1), 77โ€“79 (2004). Web of Science,ย Google Scholar
    • 5. V. V. Tuchin, A. Tรกrnok, V. P. Zharov, โ€œIn vivo flow cytometry: A horizon of opportunities,โ€ Cytom. A 79(10), 737โ€“745 (2011). Web of Science,ย Google Scholar
    • 6. C. Hartmann, R. Patil, C. P. Lin, M. Niedre, โ€œFluorescence detection, enumeration and characterization of single circulating cells in vivo: Technology, applications and future prospects,โ€ Phys. Med. Biol. 63(1), 01TR01 (2017). Web of Science,ย Google Scholar
    • 7. C. M. Pitsillides, J. M. Runnels, J. A. Spencer et al., โ€œCell labeling approaches for fluorescence-based in vivo flow cytometry,โ€ Cytom. A 79(10), 758โ€“765 (2011). Web of Science,ย Google Scholar
    • 8. I. Georgakoudi, N. Solban, J. Novak et al., โ€œIn vivo flow cytometry: A new method for enumerating circulating cancer cells,โ€ Cancer Res. 64(15), 5044 (2004). Web of Science,ย Google Scholar
    • 9. D. A. Sipkins, X. Wei, J. W. Wu et al., โ€œIn vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment,โ€ Nature 435(7044), 969 (2005). Web of Science,ย Google Scholar
    • 10. J. Novak, M. Puorisโ€™haag, โ€œTwo-color, double-slit in vivo flow cytometer,โ€ Opt. Lett. 32(20), 2993โ€“2995 (2007). Web of Science,ย Google Scholar
    • 11. Y. Li, J. Guo, C. Wang et al., โ€œCirculation times of prostate cancer and hepatocellular carcinoma cells by in vivo flow cytometry,โ€ Cytom. A 79(10), 848โ€“854 (2011). Web of Science,ย Google Scholar
    • 12. Y. Suo, T. Liu, C. Xie et al., โ€œNear infrared in vivo flow cytometry for tracking fluorescent circulating cells,โ€ Cytom. A 87(9), 878โ€“884 (2015). Web of Science,ย Google Scholar
    • 13. H. Lee, C. Alt, C. M. Pitsillides et al., โ€œIn vivo imaging flow cytometer,โ€ Opt. Express 14(17), 7789โ€“7800 (2006). Web of Science,ย Google Scholar
    • 14. S. Markovic, B. Li, V. Pera et al., โ€œA computer vision approach to rare cell in vivo fluorescence flow cytometry,โ€ Cytom. A 83(12), 1113โ€“1123 (2013). Web of Science,ย Google Scholar
    • 15. M. Weinigel, H. G. Breunig, A. Uchugonova et al., โ€œPerformance of computer vision in vivo flow cytometry with low fluorescence contrast,โ€ J. Biomed. Opt. 20(13), 035005 (2015). Google Scholar
    • 16. S. Markovic, S. Y. Li, T. X. Zhang et al., โ€œToward lower contrast computer vision in vivo flow cytometry,โ€ 36th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society, pp. 4256โ€“4259, IEEE New York (2014). Google Scholar
    • 17. M. Sarimollaoglu, A. J. Stolarz, D. A. Nedosekin et al., โ€œHigh-speed microscopy for in vivo monitoring of lymph dynamics,โ€ J. Biophoton. 11(8), e201700126 (2017). Web of Science,ย Google Scholar
    • 18. D. Wei, X. Zeng, Z. Yang et al., โ€œVisualizing interactions of circulating tumor cell and dendritic cell in the blood circulation using in vivo imaging flow cytometry,โ€ IEEE Trans. Biomed. Eng. 54(4), 2891068 (2019). Google Scholar
    • 19. C. Wang and X. Wei โ€œStudying liver cancer metastasis by in vivo imaging and flow cytometerโ€, Proc. SPIE Vol. 7634, Optical Sensors and Biophotonics, Article ID: 76340H (25 November 2009); https://doi.org/10.1117/12.851973. Google Scholar
    • 20. Z. C. Fan, J. Yan, G. D. Liu et al., โ€œReal-time monitoring of rare circulating hepatocellular carcinoma cells in an orthotopic model by in vivo flow cytometry assesses resection on metastasis,โ€ Cancer Res. 72(10), 2683โ€“2691 (2012). Web of Science,ย Google Scholar
    • 21. K. Pang, C. Xie, Z. Yang et al., โ€œMonitoring circulating prostate cancer cells by in vivo flow cytometry assesses androgen deprivation therapy on metastasis,โ€ Cytom. A 93(5), 517โ€“524 (2018). Web of Science,ย Google Scholar
    • 22. E. H. Cho, M. Wendel, M. Luttgen et al., โ€œCharacterization of circulating tumor cell aggregates identified in patients with epithelial tumors,โ€ Phys. Biol. 9(1), 016001 (2012). Web of Science,ย Google Scholar
    • 23. N. Aceto, A. Bardia, D. T. Miyamoto et al., โ€œCirculating tumor cell clusters are oligoclonal precursors of breast cancer metastasis,โ€ Cell 158, 1110โ€“1122 (2014). Web of Science,ย Google Scholar
    • 24. Y. Suo, C. Xie, X. Zhu et al., โ€œProportion of circulating tumor cell clusters increases during cancer metastasis,โ€ Cytom. A 91(3), 250โ€“253 (2016). Web of Science,ย Google Scholar
    • 25. C. Xie, Z. Yang, Y. Suo et al., โ€œSystemically infused mesenchymal stem cells show different homing profiles in healthy and tumor mouse models,โ€ Stem Cells Trans. Med. 6(4), 1120โ€“1131 (2017). Web of Science,ย Google Scholar
    • 26. D. Wei, K. Pang, Q. Song et al., โ€œNoninvasive monitoring of nanoparticle clearance and aggregation in blood circulation by in vivo flow cytometry,โ€ J. Control. Release 278, 66โ€“73 (2018). Web of Science,ย Google Scholar
    • 27. D. A. Nedosekin, M. Sarimollaoglu, E. V. Shashkov, E. I. Galanzha et al., โ€œUltra-fast photoacoustic flow cytometry with a 0.5 MHz pulse repetition rate nanosecond laser,โ€ Opt. Express 18(8), 8605โ€“8620 (2010). Web of Science,ย Google Scholar
    • 28. E. I. Galanzha, E. V. Shashkov, T. Kelly et al., โ€œIn vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells,โ€ Nat. Nanotechnol. 4(12), 855โ€“860 (2009). Web of Science,ย Google Scholar
    • 29. V. P. Zharov, E. I. Galanzha, E. V. Shashkov et al., โ€œPhotoacoustic flow cytometry: Principle and application for real-time detection of circulating single nanoparticles, pathogens, and contrast dyes in vivo,โ€ J. Biomed. Opt. 12(5), 051503 (2007). Web of Science,ย Google Scholar
    • 30. T. Kang, Q. Zhu, D. Wei et al., โ€œNanoparticles coated with neutrophil membranes can effectively treat cancer metastasis,โ€ ACS Nano 11(2), 1397โ€“1411 (2017). Web of Science,ย Google Scholar
    • 31. J. Yao, J. Feng, X. Gao et al., โ€œNeovasculature and circulating tumor cells dual-targeting nanoparticles for the treatment of the highly-invasive breast cancer,โ€ Biomaterials 113, 1โ€“17 (2017). Web of Science,ย Google Scholar
    • 32. G. A. Wagnieres, W. M. Star, B. C. Wilson et al., โ€œIn vivo fluorescence spectroscopy and imaging for oncological applications,โ€ Photochem. Photobiol. 68(5), 603โ€“632 (1998). Web of Science,ย Google Scholar
    • 33. G. He, D. Xu, H. Qin et al., โ€œIn vivo cell characteristic extraction and identification by photoacoustic flow cytography,โ€ Biomed. Opt. Express 6(10), 3748โ€“3756 (2015). Web of Science,ย Google Scholar
    • 34. E. I. Galanzha, M. Sarimollaoglu, D. A. Nedosekin et al., โ€œIn vivo flow cytometry of circulating clots using negative photothermal and photoacoustic contrasts,โ€ Cytom. A 79(10), 814โ€“824 (2011). Web of Science,ย Google Scholar
    • 35. D. A. Nedosekin, M. Sarimollaoglu, J. H. Ye et al., โ€œIn vivo ultra-fast photoacoustic flow cytometry of circulating human melanoma cells using near-infrared high-pulse rate lasers,โ€ Cytom. A 79(10), 825โ€“833 (2011). Web of Science,ย Google Scholar
    • 36. D. A. Nedosekin, M. V. Khodakovskaya, A. S. Biris et al., โ€œIn vivo plant flow cytometry: A first proof-of-concept,โ€ Cytom. A 79(10), 855โ€“865 (2011). Web of Science,ย Google Scholar
    • 37. C. Cai, K. A. Carey, D. A. Nedosekin et al., โ€œIn vivo photoacoustic flow cytometry for early malaria diagnosis,โ€ Cytom. A 89(6), 531โ€“542 (2016). Web of Science,ย Google Scholar
    • 38. R. Liu, C. Wang, C. Hu et al., โ€œIn vivo, label-free, and noninvasive detection of melanoma metastasis by photoacoustic flow cytometry,โ€ Proc. SPIE 8944, 89440Q (2014). Google Scholar
    • 39. M. A. Juratli, E. I. Galanzha, M. Sarimollaoglu et al., โ€œIn vivo detection of circulating tumor cells during tumor manipulation,โ€ Proc. of SPIE 8565, 85652Hโ€“1 (2013). Google Scholar
    • 40. M. A. Juratli, M. Sarimollaoglu, E. Siegel et al., โ€œReal-time monitoring of circulating tumor cell release during tumor manipulation using in vivo photoacoustic and fluorescent flow cytometry,โ€ Head Neck 36(8), 1207โ€“1215 (2014). Web of Science,ย Google Scholar
    • 41. Y. He, L. D. Wang, J. H. Shi et al., โ€œIn vivo label-free photoacoustic flow cytography and on-the-spot laser killing of single circulating melanoma cells,โ€ Sci. Rep. 6(1), 39616 (2016). Web of Science,ย Google Scholar
    • 42. V. Pera, X. Tan, J. Runnels et al., โ€œDiffuse fluorescence fiber probe for in vivo detection of circulating cells,โ€ J. Biomed. Opt. 22(3), 037004 (2017). Web of Science,ย Google Scholar
    • 43. V. Pera, E. Zettergren, D. H. Brooks, M. Niedre, โ€œMaximum likelihood tomographic reconstruction of extremely sparse solutions in diffuse fluorescence flow cytometry,โ€ Opt. Lett. 38(13), 2357 (2013). Web of Science,ย Google Scholar
    • 44. N. Pestana, L. J. Mortensen, J. M. Runnels et al., โ€œImproved diffuse fluorescence flow cytometer prototype for high sensitivity detection of rare circulating cells in vivo,โ€ J. Biomed. Opt. 18(7), 077002 (2013). Web of Science,ย Google Scholar
    • 45. M. Rajadhyaksha, M. Grossman, D. Esterowitz et al., โ€œIn vivo confocal scanning laser microscopy of human skin: Melanin provides strong contrast,โ€ J. Invest. Dermatol. 104(6), 946โ€“952 (1995). Web of Science,ย Google Scholar
    • 46. M. Rajadhyaksha, A. Marghoob, A. Rossi et al., โ€œReflectance confocal microscopy of skin in vivo: From bench to bedside,โ€ Lasers Surg. Med. 49(1), 7โ€“19 (2016). Web of Science,ย Google Scholar
    • 47. C. Alt, I. Veilleux, H. Lee et al., โ€œRetinal flow cytometer,โ€ Opt Lett. 32(23), 3450โ€“3452 (2007). Web of Science,ย Google Scholar
    • 48. A. S. Biris, E. I. Galanzha, Z. Li et al., โ€œIn vivo Raman flow cytometry for real time detection of carbon nanotube kinetics in lymph, blood, and tissues,โ€ J. Biomed. Opt. 14(2), 021006 (2009). Web of Science,ย Google Scholar
    • 49. L. Golan, D. Yeheskely-Hayon, L. Minai et al., โ€œNoninvasive imaging of flowing blood cells using label-free spectrally encoded flow cytometry,โ€ Biomed. Opt. Express 3(6), 1455โ€“1464 (2012). Web of Science,ย Google Scholar
    • 50. W. He, H. Wang, C. Lynn et al., โ€œIn vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry,โ€ Proc. Natl. Acad. Sci. 104(28), 11760โ€“11765 (2007). Web of Science,ย Google Scholar
    • 51. E. R. Tkaczyk, A. H. Tkaczyk, โ€œMultiphoton flow cytometry strategies and applications,โ€ Cytom. A 79(10), 775โ€“788 (2011). Web of Science,ย Google Scholar