World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Special Issue on Single Cell Analysis (Part II) — Guest Editors: Shuhua Yue, Xuantao Su, Minbiao Ji, Fu Wang and Xunbin Wei – Review ArticlesOpen Access

Coherent Raman scattering imaging of lipid metabolism in cancer

    https://doi.org/10.1142/S1793545822300154Cited by:2 (Source: Crossref)

    Cancer cells dysregulate lipid metabolism to accelerate energy production and biomolecule synthesis for rapid growth. Lipid metabolism is highly dynamic and intrinsically heterogeneous at the single cell level. Although fluorescence microscopy has been commonly used for cancer research, bulky fluorescent probes can hardly label small lipid molecules without perturbing their biological activities. Such a challenge can be overcome by coherent Raman scattering (CRS) microscopy, which is capable of chemically selective, highly sensitive, submicron resolution and high-speed imaging of lipid molecules in single live cells without any labeling. Recently developed hyperspectral and multiplex CRS microscopy enables quantitative mapping of various lipid metabolites in situ. Further incorporation of CRS microscopy with Raman tags greatly increases molecular selectivity based on the distinct Raman peaks well separated from the endogenous cellular background. Owing to these unique advantages, CRS microscopy sheds new insights into the role of lipid metabolism in cancer development and progression. This review focuses on the latest applications of CRS microscopy in the study of lipid metabolism in cancer.

    References

    • 1. W. Otto, “The metabolism of carcinoma cells,” J. Cancer Res. 9, 148–163 (1925). CrossrefGoogle Scholar
    • 2. W. H. Koppenol, P. L. Bounds, C. V. Dang, “Otto Warburg’s contributions to current concepts of cancer metabolism,” Nat. Rev. Cancer 11, 325–337 (2011). Crossref, Web of ScienceGoogle Scholar
    • 3. R. Munir, J. Lisec, J. V. Swinnen, N. Zaidi, “Lipid metabolism in cancer cells under metabolic stress,” Br. J. Cancer 120, 1090–1098 (2019). Crossref, Web of ScienceGoogle Scholar
    • 4. R. J. DeBerardinis, N. S. Chandel, “Fundamentals of cancer metabolism,” Sci. Adv. 2, e1600200 (2016). Crossref, Web of ScienceGoogle Scholar
    • 5. T. Mashima, H. Seimiya, T. Tsuruo, “De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy,” Br. J. Cancer 100, 1369–1372 (2009). Crossref, Web of ScienceGoogle Scholar
    • 6. P. J. Mullen, R. Yu, J. Longo, M. C. Archer, L. Z. Penn, “The interplay between cell signalling and the mevalonate pathway in cancer,” Nat. Rev. Cancer 16, 718–731 (2016). Crossref, Web of ScienceGoogle Scholar
    • 7. D. Ackerman, S. Tumanov, B. Qiu, E. Michalopoulou, M. Spata, A. Azzam, H. Xie, M. C. Simon, J. J. Kamphorst, “Triglycerides promote lipid homeostasis during hypoxic stress by balancing fatty acid saturation,” Cell Rep. 24, 2596–2605.e5 (2018). Crossref, Web of ScienceGoogle Scholar
    • 8. M. T. Snaebjornsson, S. Janaki-Raman, A. Schulze, “Greasing the wheels of the cancer machine: The role of lipid metabolism in cancer,” Cell Metab. 31, 62–76 (2020). Crossref, Web of ScienceGoogle Scholar
    • 9. K. Bensaad, E. Favaro, C. A. Lewis, B. Peck, S. Lord, J. M. Collins, K. E. Pinnick, S. Wigfield, F. M. Buffa, J. L. Li, Q. Zhang, M. J. O. Wakelam, F. Karpe, A. Schulze, A. L. Harris, “Fatty acid uptake and lipid storage induced by HIF-1α contribute to cell growth and survival after hypoxia-reoxygenation,” Cell Rep. 9, 349–365 (2014). Crossref, Web of ScienceGoogle Scholar
    • 10. J. Long, C. J. Zhang, N. Zhu, K. Du, Y. F. Yin, X. Tan, D. F. Liao, L. Qin, “Lipid metabolism and carcinogenesis, cancer development,” Am. J. Cancer Res. 8, 778–791 (2018). Web of ScienceGoogle Scholar
    • 11. T. C. Walther, R. V. Farese Jr., “Lipid droplets and cellular lipid metabolism,” Annu. Rev. Biochem. 81, 687–714 (2012). Crossref, Web of ScienceGoogle Scholar
    • 12. Beloribi-Djefaflia S., Vasseur S., Guillaumond F., “Lipid metabolic reprogramming in cancer cells,” Oncogenesis 5, e189 (2016). Crossref, Web of ScienceGoogle Scholar
    • 13. Luo X., Cheng C., Tan Z., Li N., Tang M., Yang L., Cao Y., “Emerging roles of lipid metabolism in cancer metastasis,” Mol. Cancer 16, 76 (2017). Crossref, Web of ScienceGoogle Scholar
    • 14. Hakumäki J. M., R. A. Kauppinen, “1H NMR visible lipids in the life and death of cells,” Trends Biochem. Sci. 25, 357–362 (2000). Crossref, Web of ScienceGoogle Scholar
    • 15. Nabi M. M., Mamun M. A., Islam A., Hasan M. M., Waliullah A. S. M., Tamannaa Z., Sato T., Kahyo T., Setou M., “Mass spectrometry in the lipid study of cancer,” Expert Rev. Proteomics 18, 201–219 (2021). Crossref, Web of ScienceGoogle Scholar
    • 16. Kristensen V. N., Lingjaerde O. C., Russnes H. G., Vollan H. K., Frigessi A., Borresen-Dale A. L., “Principles and methods of integrative genomic analyses in cancer,” Nat. Rev. Cancer 14, 299–313 (2014). Crossref, Web of ScienceGoogle Scholar
    • 17. Holzlechner M., Eugenin E., Prideaux B., “Mass spectrometry imaging to detect lipid biomarkers and disease signatures in cancer,” Cancer Rep. (Hoboken) 2, e1229 (2019). CrossrefGoogle Scholar
    • 18. Chen C., Zhao Z., Qian N., Wei S., Hu F., Min W., “Multiplexed live-cell profiling with Raman probes,” Nat. Commun. 12, 3405 (2021). Crossref, Web of ScienceGoogle Scholar
    • 19. Cheng J. X. and Xie X. S., “Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine,” Science 350, aaa8870 (2015). Crossref, Web of ScienceGoogle Scholar
    • 20. Yue S., Cheng J. X., “Deciphering single cell metabolism by coherent Raman scattering microscopy,” Curr. Opin. Chem. Biol. 33, 46–57 (2016). Crossref, Web of ScienceGoogle Scholar
    • 21. Cui S., Zhang S., Yue S., “Raman spectroscopy and imaging for cancer diagnosis,” J. Healthc. Eng. 2018, 8619342 (2018). Crossref, Web of ScienceGoogle Scholar
    • 22. Huang K. C., Li J., Zhang C., Tan Y., Cheng J. X., “Multiplex stimulated Raman scattering imaging cytometry reveals lipid-rich protrusions in cancer cells under stress condition,” iScience 23, 100953 (2020). Crossref, Web of ScienceGoogle Scholar
    • 23. Shen Y., Hu F., Min W., “Raman imaging of small biomolecules,” Annu. Rev. Biophys. 48, 347–369 (2019). Crossref, Web of ScienceGoogle Scholar
    • 24. Lee H. J., Cheng J. X., “Imaging chemistry inside living cells by stimulated Raman scattering microscopy,” Methods 128, 119–128 (2017). Crossref, Web of ScienceGoogle Scholar
    • 25. Shi L., Fung A. A., Zhou A., “Advances in stimulated Raman scattering imaging for tissues and animals,” Quant Imaging Med. Surg. 11, 1078–1101 (2021). Crossref, Web of ScienceGoogle Scholar
    • 26. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, X. Sunney Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322, 1857–1861 (2008). Crossref, Web of ScienceGoogle Scholar
    • 27. Zhang D., Slipchenko M. N., Leaird D. E., Weiner A. M., Cheng J. X., “Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper,” Opt. Express 21, 13864–13874 (2013). Crossref, Web of ScienceGoogle Scholar
    • 28. I. W. Schie, C. Krafft, J. Popp, “Applications of coherent Raman scattering microscopies to clinical and biological studies,” Analyst 140, 3897–3909 (2015). Crossref, Web of ScienceGoogle Scholar
    • 29. R. Li, P. Wang, L. Lan, F. P. Lloyd Jr., C. J. Goergen, S. Chen, J. X. Cheng, “Assessing breast tumor margin by multispectral photoacoustic tomography,” Biomed. Opt. Express 6, 1273–1281 (2015). Crossref, Web of ScienceGoogle Scholar
    • 30. Fu D., Holtom G., Freudiger C., Zhang X., Xie X. S., “Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers,” J. Phys. Chem. B 117, 4634–4640 (2013). Crossref, Web of ScienceGoogle Scholar
    • 31. Cheng J. X., “Coherent anti-stokes Raman scattering microscopy,” Appl. Spectrosc. 61, 197–208 (2007). Crossref, Web of ScienceGoogle Scholar
    • 32. Ji M., Orringer D. A., Freudiger C. W., Ramkissoon S., Liu X., Lau D., Golby A. J., Norton I., Hayashi M., Agar N. Y., Young G. S., Spino C., Santagata S., Camelo-Piragua S., Ligon K. L., Sagher O., Sunney Xie X., “Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy,” Sci. Transl. Med. 5, 201ra119 (2013). Crossref, Web of ScienceGoogle Scholar
    • 33. Zhao Z., Shen Y., Hu F., Min W., “Applications of vibrational tags in biological imaging by Raman microscopy,” Analyst 142, 4018–4029 (2017). Crossref, Web of ScienceGoogle Scholar
    • 34. Hu F., Shi L., Min W., “Biological imaging of chemical bonds by stimulated Raman scattering microscopy,” Nat. Methods 16, 830–842 (2019). Crossref, Web of ScienceGoogle Scholar
    • 35. Li J., Cheng J. X., “Direct visualization of de novo lipogenesis in single living cells,” Sci. Rep. 4, 6807 (2014). Crossref, Web of ScienceGoogle Scholar
    • 36. Hong S., Chen T., Zhu Y., Li A., Huang Y., Chen X., “Live-cell stimulated Raman scattering imaging of alkyne-tagged biomolecules,” Angew. Chem. Int. Ed. Engl. 53, 5827–5831 (2014). Crossref, Web of ScienceGoogle Scholar
    • 37. Matthaus C., Krafft C., Dietzek B., Brehm B. R., Lorkowski S., Popp J., “Noninvasive imaging of intracellular lipid metabolism in macrophages by Raman microscopy in combination with stable isotopic labeling,” Anal. Chem. 84, 8549–8556 (2012). Crossref, Web of ScienceGoogle Scholar
    • 38. Lee D., Du J., Yu R., Su Y., Heath J. R., Wei L., “Visualizing subcellular enrichment of glycogen in live cancer cells by stimulated Raman scattering,” Anal. Chem. 92, 13182–13191 (2020). Crossref, Web of ScienceGoogle Scholar
    • 39. Alfonso-Garcia A., Pfisterer S. G., Riezman H., Ikonen E., Potma E. O., “D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage,” J. Biomed. Opt. 21, 61003 (2016). Crossref, Web of ScienceGoogle Scholar
    • 40. Wei L., Hu F., Shen Y., Chen Z., Yu Y., Lin C. C., Wang M. C., Min W., “Live-cell imaging of alkyne-tagged small biomolecules by stimulated Raman scattering,” Nat. Methods 11, 410–412 (2014). Crossref, Web of ScienceGoogle Scholar
    • 41. Fu D., “Quantitative chemical imaging with stimulated Raman scattering microscopy,” Curr. Opin. Chem. Biol. 39, 24–31 (2017). Crossref, Web of ScienceGoogle Scholar
    • 42. Koundouros N., Poulogiannis G., “Reprogramming of fatty acid metabolism in cancer,” Br. J. Cancer 122, 4–22 (2020). Crossref, Web of ScienceGoogle Scholar
    • 43. Santos C. R., Schulze A., “Lipid metabolism in cancer,” FEBS J. 279, 2610–2623 (2012). Crossref, Web of ScienceGoogle Scholar
    • 44. E. Currie, A. Schulze, R. Zechner, T. C. Walther, R. V. Farese Jr., “Cellular fatty acid metabolism and cancer,” Cell Metab. 18, 153–161 (2013). Crossref, Web of ScienceGoogle Scholar
    • 45. Huang B., Song B. L., Xu C., “Cholesterol metabolism in cancer: Mechanisms and therapeutic opportunities,” Nat. Metab. 2, 132–141 (2020). CrossrefGoogle Scholar
    • 46. Cruz, A. L. S., Barreto, E. A., Fazolini, N. P. B., Viola, J. P. B., Bozza, P. T., “Lipid droplets: Platforms with multiple functions in cancer hallmarks,” Cell Death Dis. 11, 105 (2020). Crossref, Web of ScienceGoogle Scholar
    • 47. Nan X., Cheng J. X., Xie X. S., “Vibrational imaging of lipid droplets in live fibroblast cells with coherent anti-Stokes Raman scattering microscopy,” J. Lipid Res. 44, 2202–2208 (2003). Crossref, Web of ScienceGoogle Scholar
    • 48. Chang T. Y., Chang C. C., Ohgami N., Yamauchi Y., “Cholesterol sensing, trafficking, and esterification,” Annu. Rev. Cell Dev. Biol. 22, 129–157 (2006). Crossref, Web of ScienceGoogle Scholar
    • 49. Kuzu O. F., Noory M. A., Robertson G. P., “The role of cholesterol in cancer,” Cancer Res. 76, 2063–2070 (2016). Crossref, Web of ScienceGoogle Scholar
    • 50. Garcia-Bermudez J., Baudrier L., Bayraktar E. C., Shen Y., La K., Guarecuco R., Yucel B., Fiore D., Tavora B., Freinkman E., Chan S. H., Lewis C., Min W., Inghirami G., Sabatini D. M., Birsoy K., “Squalene accumulation in cholesterol auxotrophic lymphomas prevents oxidative cell death,” Nature 567, 118–122 (2019). Crossref, Web of ScienceGoogle Scholar
    • 51. Zhu Y., Chen C. Y., Li J., Cheng J. X., Jang M., Kee- Hong K., “In vitro exploration of ACAT contributions to lipid droplet formation during adipogenesis,” J. Lipid Res. 59, 820–829 (2018). Crossref, Web of ScienceGoogle Scholar
    • 52. Yang W., Bai Y., Xiong Y., Zhang J., Chen S., Zheng X., Meng X., Li L., Wang J., Xu C., Yan C., Wang L., Chang C. C., Chang T. Y., Zhang T., Zhou P., Song B. L., Liu W., Sun S. C., Liu X., Li B. L., Xu C., “Potentiating the antitumour response of CD8(+) T cells by modulating cholesterol metabolism,” Nature 531, 651–655 (2016). Crossref, Web of ScienceGoogle Scholar
    • 53. Li J., Gu D., Lee S. S., Song B., Bandyopadhyay S., Chen S., Konieczny S. F., Ratliff T. L., Liu X., Xie J., Cheng J. X., “Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer,” Oncogene 35, 6378–6388 (2016). Crossref, Web of ScienceGoogle Scholar
    • 54. Bemlih S., Poirier M. D., El Andaloussi A., “Acyl-coenzyme A: Cholesterol acyltransferase inhibitor Avasimibe affect survival and proliferation of glioma tumor cell lines,” Cancer Biol. Ther. 9, 1025–1032 (2010). Crossref, Web of ScienceGoogle Scholar
    • 55. Lee S. S., Li J., Tai J. N., Ratliff T. L., Park K., Cheng J. X., “Avasimibe encapsulated in human serum albumin blocks cholesterol esterification for selective cancer treatment,” ACS Nano 9, 2420–2432 (2015). Crossref, Web of ScienceGoogle Scholar
    • 56. Geng F., Cheng X., Wu X., Yoo J. Y., Cheng C., Guo J. Y., Mo X., Ru P., Hurwitz B., Kim S. H., Otero J., Puduvalli V., Lefai E., Ma J., Nakano I., Horbinski C., Kaur B., Chakravarti A., Guo D., “Inhibition of SOAT1 suppresses glioblastoma growth via blocking SREBP-1-mediated lipogenesis,” Clin. Cancer Res. 22, 5337–5348 (2016). Crossref, Web of ScienceGoogle Scholar
    • 57. Lee H. J., Li J., Vickman R. E., Li J., Liu R., Durkes A. C., Elzey B. D., Yue S., Liu X., Ratliff T. L., Cheng J. X., “Cholesterol esterification inhibition suppresses prostate cancer metastasis by impairing the Wnt/beta-catenin pathway,” Mol. Cancer Res. 16, 974–985 (2018). Crossref, Web of ScienceGoogle Scholar
    • 58. Yue S., Li J., Lee S. Y., Lee H. J., Shao T., Song B., Cheng L., Masterson T. A., Liu X., Ratliff T. L., Cheng J. X., “Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness,” Cell Metab. 19, 393–406 (2014). Crossref, Web of ScienceGoogle Scholar
    • 59. Lee H. J., Chen Z., Collard M., Chen F., Chen J. G., Wu M., Alani R. M., Cheng J.-X., “Multimodal metabolic imaging reveals pigment reduction and lipid accumulation in metastatic melanoma,” BME Front. 2021, 1–17 (2021). CrossrefGoogle Scholar
    • 60. Li J., Qu X., Tian J., Zhang J. T., Cheng J. X., “Cholesterol esterification inhibition and gemcitabine synergistically suppress pancreatic ductal adenocarcinoma proliferation,” PLoS One 13, e0193318 (2018). Web of ScienceGoogle Scholar
    • 61. Bandyopadhyay S., Li J., Traer E., Tyner J. W., Zhou A., Oh S. T., Cheng J. X., “Cholesterol esterification inhibition and imatinib treatment synergistically inhibit growth of BCR-ABL mutation-independent resistant chronic myelogenous leukemia,” PLoS One 12, e0179558 (2017). Crossref, Web of ScienceGoogle Scholar
    • 62. Yan S., Cui S., Ke K., Zhao B., Liu X., Yue S., Wang P., “Hyperspectral stimulated Raman scattering microscopy unravels aberrant accumulation of saturated fat in human liver cancer,” Anal. Chem. 90, 6362–6366 (2018). Crossref, Web of ScienceGoogle Scholar
    • 63. Li J., Condello S., Thomes-Pepin J., Ma X., Xia Y., Hurley T. D., Matei D., Cheng J. X., “Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells,” Cell Stem Cell 20, 303–314.e5 (2017). Crossref, Web of ScienceGoogle Scholar
    • 64. Drutis D. M., Hancewicz T. M., Pashkovski E., Feng L., Mihalov D., Holtom G., Ananthapadmanabhan K. P., Xie X. S., Misra M., “Three-dimensional chemical imaging of skin using stimulated Raman scattering microscopy,” J. Biomed. Opt. 19, 111604 (2014). Crossref, Web of ScienceGoogle Scholar
    • 65. Zhang L., Shi L., Shen Y., Miao Y., Wei M., Qian N., Liu Y., Min W., “Spectral tracing of deuterium for imaging glucose metabolism,” Nat. Biomed. Eng. 3, 402–413 (2019). Crossref, Web of ScienceGoogle Scholar
    • 66. Wei M., Shi L., Shen Y., Zhao Z., Guzman A., Kaufman L. J., Wei L., Min W., “Volumetric chemical imaging by clearing-enhanced stimulated Raman scattering microscopy,” Proc. Natl. Acad. Sci. USA 116, 6608–6617 (2019). Crossref, Web of ScienceGoogle Scholar
    • 67. Du J., Su Y., Qian C., Yuan D., Miao K., Lee D., Ng A. H. C., Wijker R. S., Ribas A., Levine R. D., Heath J. R., Wei L., “Raman-guided subcellular pharmaco-metabolomics for metastatic melanoma cells,” Nat. Commun. 11, 4830 (2020). Crossref, Web of ScienceGoogle Scholar
    • 68. Shi L., Zheng C., Shen Y., Chen Z., Silveira E. S., Zhang L., Wei M., Liu C., de Sena-Tomas C., Targoff K., Min W., “Optical imaging of metabolic dynamics in animals,” Nat. Commun. 9, 2995 (2018). Crossref, Web of ScienceGoogle Scholar
    • 69. Greenlee J. D., Subramanian T., Liu K., King M. R., “Rafting down the metastatic cascade: The role of lipid rafts in cancer metastasis, cell death, and clinical outcomes,” Cancer Res. 81, 5–17 (2021). Crossref, Web of ScienceGoogle Scholar
    • 70. Szlasa W., Zendran I., Zalesinska A., Tarek M., Kulbacka J., “Lipid composition of the cancer cell membrane,” J. Bioenerg. Biomembr. 52, 321–342 (2020). Crossref, Web of ScienceGoogle Scholar
    • 71. Goossens P., Rodriguez-Vita J., Etzerodt A., Masse M., Rastoin O., Gouirand V., Ulas T., Papantonopoulou O., Van Eck M., Auphan-Anezin N., Bebien M., Verthuy C., Vu Manh T. P., Turner M., Dalod M., Schultze J. L., Lawrence T., “Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression,” Cell Metab. 29, 1376–1389.e4 (2019). Crossref, Web of ScienceGoogle Scholar
    • 72. Yue S., Cardenas-Mora J. M., Chaboub L. S., Lelievre S. A., Cheng J. X., “Label-free analysis of breast tissue polarity by Raman imaging of lipid phase,” Biophys. J. 102, 1215–1223 (2012). Crossref, Web of ScienceGoogle Scholar
    • 73. Le T. T., Huff T. B., Cheng J. X., “Coherent anti-Stokes Raman scattering imaging of lipids in cancer metastasis,” BMC Cancer 9, 42 (2009). Crossref, Web of ScienceGoogle Scholar
    • 74. Shen Y., Zhao Z., Zhang L., Shi L., Shahriar S., Chan R. B., Di Paolo G., Min W., “Metabolic activity induces membrane phase separation in endoplasmic reticulum,” Proc. Natl. Acad. Sci. USA 114, 13394–13399 (2017). Crossref, Web of ScienceGoogle Scholar
    • 75. Chen T., Yavuz A., Wang M. C., “Dissecting lipid droplet biology with coherent Raman scattering microscopy,” J. Cell Sci. 135(5), jcs252353 (2022). Crossref, Web of ScienceGoogle Scholar
    • 76. N. Qian and W. Min, Supermultiplexed vibrational imaging: From probe development to biomedical applications, in Stimulated Raman Scattering Microscopy: Techniques and Applications, J.-X. ChengW. MinY. OzekiD. Polli., Chap. 21, pp. 311–328, Elsevier (2022). CrossrefGoogle Scholar
    • 77. Jang H., Li Y., Fung A. A., Bagheri P., Hoang K., Skowronska-Krawczyk D., Chen X., Wu J. Y., Bintu B., Shi L., “Super-resolution stimulated Raman Scattering microscopy with A-PoD,” bioRxiv (2022), https://doi.org/10.1101/2022.06.04.494813. Google Scholar
    • 78. Zhang W., Li Y., Fung A. A., Li Z., Jang H., Zha H., Chen X., Gao F., Wu J. Y., Sheng H., Yao J., Skowronska-Krawczyk D., Jain S., Shi L., “Multi-molecular hyperspectral PRM-SRS imaging,” bioRxiv (2022), https://doi.org/10.1101/2022.07.25.501472. Google Scholar
    • 79. Fung A. A., Hoang K., Zha H., Chen D., Zhang W., Shi L., “Imaging sub-cellular methionine and insulin interplay in triple negative breast cancer lipid droplet metabolism,” Front. Oncol. 12, 858017 (2022). Crossref, Web of ScienceGoogle Scholar