World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Correlation of image textures of a polarization feature parameter and the microstructures of liver fibrosis tissues

    https://doi.org/10.1142/S1793545822410048Cited by:3 (Source: Crossref)

    Mueller matrix imaging is emerging for the quantitative characterization of pathological microstructures and is especially sensitive to fibrous structures. Liver fibrosis is a characteristic of many types of chronic liver diseases. The clinical diagnosis of liver fibrosis requires time-consuming multiple staining processes that specifically target on fibrous structures. The staining proficiency of technicians and the subjective visualization of pathologists may bring inconsistency to clinical diagnosis. Mueller matrix imaging can reduce the multiple staining processes and provide quantitative diagnostic indicators to characterize liver fibrosis tissues. In this study, a fiber-sensitive polarization feature parameter (PFP) was derived through the forward sequential feature selection (SFS) and linear discriminant analysis (LDA) to target on the identification of fibrous structures. Then, the Pearson correlation coefficients and the statistical T-tests between the fiber-sensitive PFP image textures and the liver fibrosis tissues were calculated. The results show the gray level run length matrix (GLRLM)-based run entropy that measures the heterogeneity of the PFP image was most correlated to the changes of liver fibrosis tissues at four stages with a Pearson correlation of 0.6919. The results also indicate the highest Pearson correlation of 0.9996 was achieved through the linear regression predictions of the combination of the PFP image textures. This study demonstrates the potential of deriving a fiber-sensitive PFP to reduce the multiple staining process and provide textures-based quantitative diagnostic indicators for the staging of liver fibrosis.

    References

    • 1. S. Cheemerla, M. Balakrishnan , “Global epidemiology of chronic liver disease,” Clin. Liver Dis. 17, 365 (2021). CrossrefGoogle Scholar
    • 2. S. K. Asrani, H. Devarbhavi, J. Eaton, P. S. Kamath , “Burden of liver diseases in the world,” J. Hepatol. 70, 151–171 (2019). Crossref, Web of ScienceGoogle Scholar
    • 3. A. H. Fischer, K. A. Jacobson, J. Rose, R. Zeller , “Hematoxylin and eosin staining of tissue and cell sections,” Cold Spring Harb. Protoc. 2008, pdb-prot4986 (2008). CrossrefGoogle Scholar
    • 4. N. C. Foot , “The Masson trichrome staining methods in routine laboratory use,” Stain Technol. 8, 101–110 (1933). CrossrefGoogle Scholar
    • 5. H. Gordon, H. H. Sweets Jr. , “A simple method for the silver impregnation of reticulum,” Am. J. Pathol. 12, 545 (1936). Google Scholar
    • 6. H. He, R. Liao, N. Zeng, P. Li, Z. Chen, X. Liu, H. Ma , “Mueller matrix polarimetry — an emerging new tool for characterizing the microstructural feature of complex biological specimen,” J. Lightw. Technol. 37, 2534–2548 (2019). Crossref, Web of ScienceGoogle Scholar
    • 7. C. He, H. He, J. Chang, B. Chen, H. Ma, M. J. Booth , “Polarisation optics for biomedical and clinical applications: A review,” Light: Sci. Appl. 10, 1–20 (2021). Crossref, Web of ScienceGoogle Scholar
    • 8. J. Qi, D. S. Elson , “A high definition Mueller polarimetric endoscope for tissue characterisation,” Sci. Rep. 6, 1–11 (2016). Web of ScienceGoogle Scholar
    • 9. J. Qi, D. S. Elson , “Mueller polarimetric imaging for surgical and diagnostic applications: A review,” J. Biophoton. 10, 950–982 (2017). Crossref, Web of ScienceGoogle Scholar
    • 10. T. Liu, M. Lu, B. Chen, Q. Zhong, J. Li, H. He, H. Mao, H. Ma , “Distinguishing structural features between Crohns disease and gastrointestinal luminal tuberculosis using Mueller matrix derived parameters,” J. Biophoton. 12, e201900151 (2019). Crossref, Web of ScienceGoogle Scholar
    • 11. P. Schucht, H. R. Lee, H. M. Mezouar, E. Hewer, A. Raabe, M. Murek, I. Zubak, J. Goldberg, E. Kövari, A. Pierangelo, T. Novikova , “Visualization of white matter fiber tracts of brain tissue sections with wide-field imaging Mueller polarimetry,” IEEE Trans. Med. Imaging 39, 4376–4382 (2020). Crossref, Web of ScienceGoogle Scholar
    • 12. H. R. Lee, I. Saytashev, V. N. Du Le, M. Mahendroo, J. Ramella-Roman, T. Novikova , “Mueller matrix imaging for collagen scoring in mice model of pregnancy,” Sci. Rep. 11, 1–12 (2021). Web of ScienceGoogle Scholar
    • 13. H. He, N. Zeng, D. Li, R. Liao, H. Ma , “Quantitative Mueller matrix polarimetry techniques for biological tissues,” J. Innov. Opt. Health Sci. 5, 1250017 (2012). Link, Web of ScienceGoogle Scholar
    • 14. Y. Huang, A. Hou, J. Wang, Y. Yao, W. Miao, X. Tian, J. Yu, C. Li, H. Ma, Y. Fan , “Identification of serous ovarian tumors based on polarization imaging and correlation analysis with clinicopathological features,” J. Innov. Opt. Health Sci. 2241002 (2022). Web of ScienceGoogle Scholar
    • 15. Y. Dong, J. Qi, H. He, C. He, S. Liu, J. Wu, D. S. Elson, H. Ma , “Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope,” Biomed. Opt. Express 8, 3643–3655 (2017). Crossref, Web of ScienceGoogle Scholar
    • 16. B. Laude-Boulesteix, A. De Martino, B. Drévillon, L. Schwartz , “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824–2832 (2004). Crossref, Web of ScienceGoogle Scholar
    • 17. Y. Wang, H. He, J. Chang, C. He, S. Liu, M. Li, N. Zeng, J. Wu, H. Ma , “Mueller matrix microscope: A quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues,” J. Biomed. Opt. 21, 071112 (2016). Crossref, Web of ScienceGoogle Scholar
    • 18. H. R. Lee, P. Li, T. S. H. Yoo, C. Lotz, F. K. Groeber-Becker, S. Dembski, E. Garcia-Caurel, R. Ossikovski, H. Ma, T. Novikova , “Digital histology with Mueller microscopy: How to mitigate an impact of tissue cut thickness fluctuations,” J. Biomed. Opt. 24, 076004 (2019). Crossref, Web of ScienceGoogle Scholar
    • 19. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg , “Scikit-learn: Machine learning in Python,” J. Mach. Learn. Res. 12, 2825–2830 (2011). Web of ScienceGoogle Scholar
    • 20. A. Géron , Hands-on Machine Learning with ScikitLearn, Keras, and TensorFlow: Concepts, Tools,and Techniques to Build Intelligent Systems (O’Reilly Media, Sebastopol, CA, USA, 2019), p. 235. Google Scholar
    • 21. F. J. Ferri, P. Pudil, M. Hatef, J. Kittler , “Comparative study of techniques for large-scale feature selection,” in Machine Intelligence and Pattern Recognition (Elsevier, North-Holland, 1994), pp. 403–413. Google Scholar
    • 22. N. D. Theise , “Liver biopsy assessment in chronic viral hepatitis: A personal, practical approach,” Mod. Pathol. 20, S3–S14 (2007). Crossref, Web of ScienceGoogle Scholar
    • 23. T. Huang, R. Meng, J. Qi, Y. Liu, X. Wang, Y. Chen, R. Liao, H. Ma , “Fast Mueller matrix microscope based on dual DoFP polarimeters,” Opt. Lett. 46, 1676–1679 (2021). Crossref, Web of ScienceGoogle Scholar
    • 24. B. M. Ratliff, C. F. LaCasse, J. S. Tyo , “Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery,” Opt. Express 17, 9112–9125 (2009). Crossref, Web of ScienceGoogle Scholar
    • 25. P. Li, Y. Dong, J. Wan, H. He, T. Aziz, H. Ma , “Polaromics: Deriving polarization parameters from a Mueller matrix for quantitative characterization of biomedical specimen,” J. Phys. D: Appl. Phys. (2021). Web of ScienceGoogle Scholar
    • 26. P. Li, D. Lv, H. He, H. Ma , “Separating azimuthal orientation dependence in polarization measurements of anisotropic media,” Opt. Express 26, 3791–3800 (2018). Crossref, Web of ScienceGoogle Scholar
    • 27. S.-Y. Lu, R. A. Chipman , “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106–1113 (1996). CrossrefGoogle Scholar
    • 28. S. Manhas, M. K. Swami, P. Buddhiwant, N. Ghosh, P. K. Gupta, K. Singh , “Mueller matrix approach for determination of optical rotation in chiral turbid media in backscattering geometry,” Opt. Express 14, 190–202 (2006). Crossref, Web of ScienceGoogle Scholar
    • 29. N. Ghosh, M. F. G. Wood, I. A. Vitkin , “Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence,” J. Biomed. Opt. 13, 044036 (2008). Crossref, Web of ScienceGoogle Scholar
    • 30. Y. Dong, J. Wan, X. Wang, J.-H. Xue, J. Zou, H. He, P. Li, A. Hou, H. Ma , “A polarization-imaging-based machine learning framework for quantitative pathological diagnosis of cervical precancerous lesions,” IEEE Trans. Med. Imaging 40, 3728–3738 (2021). Crossref, Web of ScienceGoogle Scholar
    • 31. R. Barakat , “Polarization entropy transfer and relative polarization entropy,” Opt. Commun. 123, 443–448 (1996). Crossref, Web of ScienceGoogle Scholar
    • 32. A. Tariq, P. Li, D. Chen, D. Lv, H. Ma , “Physically realizable space for the purity-depolarization plane for polarized light scattering media,” Phys. Rev. Lett. 119, 033202 (2017). Crossref, Web of ScienceGoogle Scholar
    • 33. J. J. Gil, E. Bernabeu , “Depolarization and polarization indices of an optical system,” Opt. Acta: Int. J. Opt. 33, 185–189 (1986). CrossrefGoogle Scholar
    • 34. A. Hou, X. Wang, Y. Fan, W. Miao, Y. Dong, X. Tian, J. Zou, H. Ma , “Polarimetry feature parameter deriving from Mueller matrix imaging and auto-diagnostic significance to distinguish HSIL and CSCC,” J. Innov. Opt. Health Sci. 15, 2142008 (2022). Link, Web of ScienceGoogle Scholar
    • 35. A. Zwanenburg, S. Leger, M. Vallières, S. Löck, “Image biomarker standardisation initiative,” arXiv:1612.07003. Google Scholar
    • 36. C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith , “Array programming with NumPy,” Nature 585, 357–362 (2020). Crossref, Web of ScienceGoogle Scholar
    • 37. D. Semenick , “Tests and measurements: The T-test,” Strength Cond. J. 12, 36–37 (1990). CrossrefGoogle Scholar
    • 38. T. K. Kim , “T-test as a parametric statistic,” Korean J. Anesthesiol. 68, 540 (2015). CrossrefGoogle Scholar
    • 39. O. Arteaga, E. Garcia-Caurel, R. Ossikovski , “Anisotropy coefficients of a Mueller matrix,” J. Opt. Soc. Am. A 28, 548–553 (2011). CrossrefGoogle Scholar
    • 40. S. Nechayev, R. Barczyk, U. Mick, P. Banzer , “Substrate-induced chirality in an individual nanostructure,” ACS Photon. 6, 1876–1881 (2019). Crossref, Web of ScienceGoogle Scholar
    • 41. M. Sun, H. He, N. Zeng, E. Du, Y. Guo, S. Liu, J. Wu, Y. He, H. Ma , “Characterizing the microstructures of biological tissues using Mueller matrix and transformed polarization parameters,” Biomed. Opt. Express 5, 4223–4234 (2014). Crossref, Web of ScienceGoogle Scholar
    • 42. Y. Yao, M. Zuo, Y. Dong, L. Shi, Y. Zhu, L. Si, X. Ye, H. Ma , “Polarization imaging feature characterization of different endometrium phases by machine learning,” OSA Contin. 4, 1776–1791 (2021). Crossref, Web of ScienceGoogle Scholar
    • 43. J. J. M. Van Griethuysen, A. Fedorov, C. Parmar, A. Hosny, N. Aucoin, V. Narayan, R. G. H. Beets-Tan, J.-C. Fillion-Robin, S. Pieper, H. J. W. L. Aerts , “Computational radiomics system to decode the radiographic phenotype,” Cancer Res. 77, e104–e107 (2017). Crossref, Web of ScienceGoogle Scholar
    • 44. D. C. Montgomery, E. A. Peck, G. G. Vining , Introduction to Linear Regression Analysis (John Wiley & Sons, Hoboken, New Jersey, USA, 2021), pp. 12–35. Google Scholar
    • 45. G. A. F. Seber, A. J. Lee , Linear Regression Analysis (John Wiley & Sons, 2012). Google Scholar