World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

1.3 μm broadband swept sources with enhanced nonlinear effects

    https://doi.org/10.1142/S1793545822500389Cited by:0 (Source: Crossref)

    In this work, a new structure is used to enhance the nonlinear effect in the cavity, which improves the performance of the 1.3μm broadband swept source. The swept source adopts a semiconductor optical amplifier (SOA), a circulator, a coupler, and a tunable filter. In the structure, the light passes through the nonlinear medium (SOA) twice in two opposite directions, which excites the nonlinear effect and increases the performance of the swept source. The tunable filter is based on a polygon rotating mirror and gratings. Traditionally, multiple SOAs are adopted to improve the sweep range and the optical power, which increases the cost and complexity of the swept source. The method proposed in this paper can improve the spectral range and optical power of the swept sources without additional accessories. For the short-cavity swept source, the power increases from 6mW to 7.7mW, and the sweep range increases from 98nm to 120nm. The broadband swept sources could have wide applications in biomedical imaging, sensor system, measurement and so on.

    References

    • 1. S. R. Chinn, E. A. Swanson, J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997). Crossref, Web of ScienceGoogle Scholar
    • 2. T. Klein, R. Huber, “High-speed OCT light sources and systems [Invited],” Biomed. Opt. Exp. 8, 828–859 (2017). Crossref, Web of ScienceGoogle Scholar
    • 3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). Crossref, Web of ScienceGoogle Scholar
    • 4. W. Drexler, J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications, Springer (2015). CrossrefGoogle Scholar
    • 5. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Exp. 3(11), 2733 (2012). Crossref, Web of ScienceGoogle Scholar
    • 6. J. Zhang, T. Nguyen, B. Potsaid, V. Jayaraman, C. Burgner, S. Chen, J. Li, K. Liang, A. Cable, G. Traverso, H. Mashimo, J. G. Fujimoto, “Multi-MHz MEMS-VCSEL swept-source optical coherence tomography for endoscopic structural and angiographic imaging with miniaturized brushless motor probes,” Biomed. Opt. Exp. 12(4), 2384–2403 (2021). Crossref, Web of ScienceGoogle Scholar
    • 7. R. Huber, M. Wojtkowski, K. Taira, J. Fujimoto, K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: Design and scaling principles,” Opt. Exp. 13(9), 3513–3528 (2005). Crossref, Web of ScienceGoogle Scholar
    • 8. B. Potsaid, Be. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, J. G. Fujimoto, “Ultrahigh speed 1050 nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Exp. 18(19), 20029–20048 (2010). Crossref, Web of ScienceGoogle Scholar
    • 9. R. Huber, M. Wojtkowski, J. G. Fujimoto, “Fourier domain mode locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Exp. 14, 3225–3237 (2006). Crossref, Web of ScienceGoogle Scholar
    • 10. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Exp. 4, 1890–1908 (2013). Crossref, Web of ScienceGoogle Scholar
    • 11. A. Mahjoubfar, D. V. Churkin, S. Barland, N. Broderick, S. K. Turitsyn, B. Jalali, “Time stretch and its applications,” Nat. Photon. 11, 341–351 (2017). Crossref, Web of ScienceGoogle Scholar
    • 12. Y. Jiang, S. Karpf, B. Jalali, “Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera,” Nat. Photon. 14, 14–18 (2020). Crossref, Web of ScienceGoogle Scholar
    • 13. D. Huang, F. Li, C. Shang, Z. Cheng, P. K. A. Wai, “Reconfigurable time-stretched swept laser source with up to 100 MHz sweep rate, 100 nm bandwidth, and 100 mm OCT imaging range,” Photon. Res. 8(8), 1360–1367 (2020). Crossref, Web of ScienceGoogle Scholar
    • 14. D. Huang, F. Li, Z. He, Z. Cheng, S. Chao, P. K. Wai, “400 MHz ultrafast optical coherence tomography,” Opt. Lett. 45(24), 6675–6678 (2020). Crossref, Web of ScienceGoogle Scholar
    • 15. S. Yamashita, “Dispersion-tuned swept lasers for optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 24(3), 6800109 (2018). Crossref, Web of ScienceGoogle Scholar
    • 16. Z. Wang, B. Potsaid, L. Chen, C. Doerr, H.-C. Lee, T. Nielson, V. Jayaraman, A. E. Cable, E. Swanson, J. G. Fujimoto, “Cubic meter volume optical coherence tomography,” Optica 3, 1496–1503 (2016). Crossref, Web of ScienceGoogle Scholar
    • 17. D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Exp. 19(21), 20930–20939 (2011). Crossref, Web of ScienceGoogle Scholar
    • 18. W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Exp. 3(10), 2647–2657 (2012). Crossref, Web of ScienceGoogle Scholar
    • 19. T.-H. Tsai, C. Zhou, D. C. Adler, J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Exp. 17(23), 21257–21270 (2009). Crossref, Web of ScienceGoogle Scholar
    • 20. R. Huber, D. C. Adler, J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006). Crossref, Web of ScienceGoogle Scholar
    • 21. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, R. Huber, “Multi-megahertz OCT: High quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second,” Opt. Exp. 18(14), 14685–14704 (2010). Crossref, Web of ScienceGoogle Scholar
    • 22. J. P. Kolb, T. Pfeiffer, M. Eibl, H. Hakert, R. Huber, “High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates,” Biomed. Opt. Exp. 9(1), 120–130 (2018). Crossref, Web of ScienceGoogle Scholar
    • 23. W.-Y. Oh, B. J. Vakoc, M. Shishkov, G. J. Tearney, B. E. Bouma, “ø400 kHz repetition rate wavelength-swept laser and application to high-speed optical frequency domain imaging,” Opt. Lett. 35(17), 2919–2921 (2010). Crossref, Web of ScienceGoogle Scholar
    • 24. M. K. K. Leung, A. Mariampillai, B. A. Standish, K. K. C. Lee, N. R. Munce, I. Alex Vitkin, V. X. D. Yang, “High-power wavelength-swept laser in Littman telescope-less polygon filter and dual-amplifier configuration for multichannel optical coherence tomography,” Opt. Lett. 34(18), 2814–2816 (2009). Crossref, Web of ScienceGoogle Scholar
    • 25. S. Marschall, T. Klein, W. Wieser, B. R. Biedermann, K. Hsu, K. P. Hansen, B. Sumpf, K.-H. Hasler, G. Erbert, O. B. Jensen, C. Pedersen, R. Huber, P. E. Andersen, “Fourier domain mode-locked swept source at 1050 nm based on a tapered amplifier,” Opt. Exp. 18(15), 15820–15831 (2010). Crossref, Web of ScienceGoogle Scholar
    • 26. W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma, “Wide tuning range wavelength-swept laser with two semiconductor optical ampli-fiers,” IEEE Photon. Technol. Lett. 17, 678–680 (2005). Crossref, Web of ScienceGoogle Scholar
    • 27. M. Y. Jeon, J. Zhang, Q. Wang, Z. Chen, “High-speed and wide bandwidth Fourier domain mode-locked wavelength swept laser with multiple SOAs,” Opt. Exp. 16(4), 2547–2554 (2008). Crossref, Web of ScienceGoogle Scholar
    • 28. A. Bilenca, S. H. Yun, G. J. Tearney, B. E. Bouma, “Numerical study of wavelength-swept semiconductor ring lasers: The role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications,” Opt. Lett. 31(6), 760–762 (2006). Crossref, Web of ScienceGoogle Scholar
    • 29. A. Mecozzi, S. Scotti, A. D’Ottavi, E. Iannone, P. Spano, “Four-wave mixing in traveling-wave semiconductor amplifiers,” IEEE J. Quantum Electron. 31(4), 689–699 (1995). Crossref, Web of ScienceGoogle Scholar
    • 30. J. Fan, P. Wang, F. Gao, Z. Hu, W. Kong, H. Li, G. Shia, “Phase and amplitude correction in polygon tunable laser-based optical coherence tomography,” J. Biomed. Opt. 22(9), 096013 (2017). Crossref, Web of ScienceGoogle Scholar
    • 31. G. P. Agrawal, Nonlinear Fiber Optics, 5th Edition, Academic Press (2013). Google Scholar
    • 32. X. Ge, S. Chen, S. Chen, L. Liu, “High resolution optical coherence tomography,” J. Lightwave Technol. 39(12), 3824-3835 (2021). Crossref, Web of ScienceGoogle Scholar
    • 33. X. Shu, L. Beckmann, H. F. Zhang, “Visible-light optical coherence tomography: A review,” J. Biomed. Opt. 22(12), 121707 (2017). Web of ScienceGoogle Scholar
    • 34. I. Rubinoff, R. V. Kuranov, H. F. Zhang, “Intrinsic spectrally-dependent background in spectroscopic visible-light optical coherence tomography,” Biomed. Opt. Exp. 12(1), 110–124 (2021). Crossref, Web of ScienceGoogle Scholar