World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Depolarizing metrics in the biomedical field: Vision enhancement and classification of biological tissues

    https://doi.org/10.1142/S1793545823300045Cited by:3 (Source: Crossref)

    Polarimetry encompasses a collection of optical techniques broadly used in a variety of fields. Nowadays, such techniques have provided their suitability in the biomedical field through the study of the polarimetric response of biological samples (retardance, dichroism and depolarization) by measuring certain polarimetric observables. One of these features, depolarization, is mainly produced by scattering on samples, which is a predominant effect in turbid media as biological tissues. In turn, retardance and dichroic effects are produced by tissue anisotropies and can lead to depolarization too. Since depolarization is a predominant effect in tissue samples, we focus on studying different depolarization metrics for biomedical applications. We report the suitability of a set of depolarizing observables, the indices of polarimetric purity (IPPs), for biological tissue inspection. We review some results where we demonstrate that IPPs lead to better performance than the depolarization index, which is a well-established and commonly used depolarization observable in the literature. We also provide how IPPs are able to significantly enhance contrast between different tissue structures and even to reveal structures hidden by using standard intensity images. Finally, we also explore the classificatory potential of IPPs and other depolarizing observables for the discrimination of different tissues obtained from ex vivo chicken samples (muscle, tendon, myotendinous junction and bone), reaching accurate models for tissue classification.

    References

    • 1. T. Fan, G. Xu, J. Teng, Y. Li, X. Zhang, C. Wang, P. Xu, Y. Yan, X. Xu , “Polarimetry-inspired feature fusion spectroscopy (PIFFS) for ammonia sensing in water,” Opt. Express 30, 18415–18433 (2022). Crossref, Web of ScienceGoogle Scholar
    • 2. M. Asgarimehr, M. Hoseini, M. Semmling, M. Ramatschi, A. Camps, H. Nahavandchi, R. Haas, J. Wickert , “Remote sensing of precipitation using reflected gnss signals: Response analysis of polarimetric observations,” IEEE Trans. Geosci. Remote Sens. 60, 1–12 (2022). Crossref, Web of ScienceGoogle Scholar
    • 3. M. Honda, R. Tazaki, K. Murakawa, H. Terada, T. Kudo, T. Hattori, J. Hashimoto, M. Tamura, M. Watanabe , “Subaru/IRCSL-band spectro-polarimetry of the hd142527 disk scattered light,” Publ. Astron. Soc. Jpn. 74, 851–856 (2022). Crossref, Web of ScienceGoogle Scholar
    • 4. A. van Eeckhout, E. Garcia-Caurel, T. Garnatje, J. C. Escalera, M. Durfort, J. Vidal, J. J. Gil, J. Campos, A. Lizana , “Polarimetric imaging microscopy for advanced inspection of vegetal tissues,” Sci. Rep. 11(1), 3913 (2021). Crossref, Web of ScienceGoogle Scholar
    • 5. C. H. Lucas Patty, D. A. Luo, F. Snik, F. Ariese, W. J. Buma, I. L. ten Kate, R. J. M. van Spanning, W. B. Sparks, T. A. Germer, G. Garab, M. W. Kudenov , “Imaging linear and circular polarization features in leaves with complete Mueller matrix polarimetry,” Bioc. et Bio. Acta (BBA) — General Subjects 1862(6), 13501363 (2018). Web of ScienceGoogle Scholar
    • 6. N. Ghosh, I. A. Vitkin , “Tissue polarimetry: Concepts, challenges, applications, and outlook,” J. Biomed. Opt. 16(11), 110801 (2011). Crossref, Web of ScienceGoogle Scholar
    • 7. L. V. Wang, G. L. Coté, S. L. Jacques , “Special section guest editorial: Tissue polarimetry,” J. Biomed. Opt. 7, 278 (2002). Crossref, Web of ScienceGoogle Scholar
    • 8. A. G. Clark, D. M. Vignjevic , “Modes of cancer cell invasion and the role of the microenvironment,” Curr. Opt. Cell Biol. 36, 13–22 (2015). Crossref, Web of ScienceGoogle Scholar
    • 9. M. Kupinski, M. Boffety, F. Goudail, R. Ossikovski, A. Pierangelo, J. Rehbinder, J. Vizet, T. Novikova , “Polarimetric measurement utility for pre-cancer detection from uterine cervix specimens,” Biomed. Opt. Express 9, 5691–5702 (2018). Crossref, Web of ScienceGoogle Scholar
    • 10. J. Chue-Sang, N. Holness, M. Gonzalez, J. Greaves, I. Saytashev, S. Stoff, A. Gandjbakhche, V. Chernomordik, G. Burkett, J. Ramella-Roman , “Use of Mueller matrix colposcopy in the characterization of cervical collagen anisotropy,” J. Biomed. Opt. 23(12), 1–9 (2018). Crossref, Web of ScienceGoogle Scholar
    • 11. J. Sprenger, C. Murray, J. Lad, B. Jones, G. Thomas, S. Nofech-Mozes, M. Khorasani, A. Vitkin , “Toward a quantitative method for estimating tumour-stroma ratio in breast cancer using polarized light microscopy,” Biomed. Opt. Express 12, 3241–3252 (2021). Crossref, Web of ScienceGoogle Scholar
    • 12. V. A. Ushenko, B. T. Hogan, A. Dubolazov, G. Piavchenko, S. L. Kuznetsov, A. G. Ushenko, Y. O. Ushenko, M. Gorsky, A. Bykov, I. Meglinski , “3D Mueller matrix mapping of layered distributions of depolarization degree for analysis of prostate adenoma and carcinoma diffuse tissues,” Sci. Rep. 11(1), 5162 (2021). Crossref, Web of ScienceGoogle Scholar
    • 13. V. A. Ushenko, B. T. Hogan, A. Dubolazov, A. V. Grechina, T. V. Boronikhina, M. Gorsky, A. G. Ushenko, Y. O. Ushenko, A. Bykov, I. Meglinski , “Embossed topographic depolarization maps of biological tissues with different morphological structures,” Sci. Rep. 11(1), 3871 (2021). Crossref, Web of ScienceGoogle Scholar
    • 14. E. Du, H. He, N. Zeng, M. Sun, Y. Guo, J. Wu, S. Liu, H. Ma , “Mueller matrix polarimetry for differentiating characteristic features of cancerous tissues,” J. Biomed. Opt. 19(7), 076013 (2014). Crossref, Web of ScienceGoogle Scholar
    • 15. J. S. Baba, J. Chung, A. H. DeLaughter, B. D. Cameron, G. L. Cote , “Development and calibration of an automated Mueller matrix polarization imaging system,” J. Biomed. Opt. 7(3), 341–349 (2002). Crossref, Web of ScienceGoogle Scholar
    • 16. P. Schucht, H. R. Lee, H. M. Mezouar, E. Hewer, A. Raabe, M. Murek, I. Zubak, J. Goldberg, E. Kövari, A. Pierangelo, T. Novikova , “Visualization of white matter fiber tracts of brain tissue sections with wide-field imaging Mueller polarimetry,” IEEE Trans. Med. Imaging 39(12), 4376–4382 (2020). Crossref, Web of ScienceGoogle Scholar
    • 17. O. Rodríguez-Núñez, P. Schucht, E. Hewer, T. Novikova, A. Pierangelo , “Polarimetric visualization of healthy brain fiber tracts under adverse conditions: ex vivo studies,” Biomed. Opt. Express 12, 6674–6685 (2021). Crossref, Web of ScienceGoogle Scholar
    • 18. Z. Ali, T. Mahmood, A. Shahzad, M. Iqbal, I. Ahmad , “Assessment of tissue pathology using optical polarimetry,” Lasers Med. Sci. 37, 1907–1919 (2022). Crossref, Web of ScienceGoogle Scholar
    • 19. C. He, H. He, J. Chang, B. Cheng, H. Ma, M. J. Booth , “Polarisation optics for biomedical and clinical applications: A review,” Light Sci. Appl. 10, 194 (2021). Crossref, Web of ScienceGoogle Scholar
    • 20. J. Qi, D. S. Elson , “Mueller polarimetric imaging for surgical and diagnostic applications: A review,” J. Biophoton. 10(8), 950–982 (2017). Crossref, Web of ScienceGoogle Scholar
    • 21. H. He, R. Liao, N. Zeng, P. Li, Z. Chen, X. Liu, H. Ma , “Mueller matrix polarimetry — an emerging new tool for characterizing the microstructural feature of complex biological specimen,” J. Light. Technol. 37(11), 2534–2548 (2019). Crossref, Web of ScienceGoogle Scholar
    • 22. J. C. Ramella-Roman, I. Saytashev, M. Piccini , “A review of polarization-based imaging technologies for clinical and preclinical applications,” J. Opt. 22, 123001 (2020). CrossrefGoogle Scholar
    • 23. C. Heinrich, J. Rehbinder, A. Nazac, B. Teig, A. Pierangelo, J. Zallat , “Mueller polarimetric imaging of biological tissues: classification in a decision-theoretic framework,” J. Opt. Soc. Am. A 35, 2046–2057 (2018). CrossrefGoogle Scholar
    • 24. C. Rodriguez, A. van Eeckhout, L. Ferrer, E. Garcia-Caurel, E. González-Arnay, J. Campos, A. Lizana , “Polarimetric data-based model for tissue recognition,” Biomed. Opt. Express 12(8), 4852–4872 (2021). Crossref, Web of ScienceGoogle Scholar
    • 25. D. Ivanov, V. Dremin, E. Borisova, A. Bykov, T. Novikova, I. Meglinski, R. Ossikovski , “Polarization and depolarization metrics as optical markers in support to histopathology of ex vivo colon tissue,” Biomed. Opt. Express 12, 4560–4572 (2021). Crossref, Web of ScienceGoogle Scholar
    • 26. R. Meng, H. He, T. Liu, T. Sun, H. Ma , “Quantitative detection and comparison of liver tissues using label-free Mueller matrix microscope,” Proc. SPIE 10877, Dynamics and Fluctuations in Biomedical Photonics XVI 10877, 101–108 (2019). CrossrefGoogle Scholar
    • 27. A. van Eeckhout, E. Garcia-Caurel, R. Ossikovski, A. Lizana, C. Rodríguez, E. González-Arnay, J. Campos , “Depolarization metric spaces for biological tissues classification,” J. Biophoton. 13, e202000083 (2020). Crossref, Web of ScienceGoogle Scholar
    • 28. S. L. Jacques, J. C. Ramella-Roman, K. Lee , “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7(3), 329–340 (2002). Crossref, Web of ScienceGoogle Scholar
    • 29. S. Manhas, M. K. Swami, H. S. Patel, A. Uppal, N. Ghosh, P. K. Gupta , “Polarized diffuse reflectance measurements on cancerous and noncancerous tissues,” J. Biophoton. 2, 581–587 (2009). Crossref, Web of ScienceGoogle Scholar
    • 30. J. Chung, W. Jung, M. J. Hammer-Wilson, P. Wilder-Smith, Z. Chen , “Use of polar decomposition for the diagnosis of oral precancer,” Appl. Opt. 46, 3038–3045 (2007). Crossref, Web of ScienceGoogle Scholar
    • 31. A. Pierangelo, A. Benali, M.-R. Antonelli, T. Novikova, P. Validire, B. Gayet, A. De Martino , “Ex vivo characterization of human colon cancer by Mueller polarimetric imaging,” Opt. Express 19, 1582–1593 (2011). Crossref, Web of ScienceGoogle Scholar
    • 32. J. J. Gil, R. Ossikovski , Polarized Light and the Mueller Matrix Approach, CRC Press, Boca Raton (2016). Google Scholar
    • 33. R. Ossikovski, J. Vizet , “Eigenvalue-based depolarization metric spaces for Mueller matrices,” J. Opt. Soc. Am. A 36, 1173–1186 (2019). CrossrefGoogle Scholar
    • 34. A. van Eeckhout, A. Lizana, E. Garcia-Caurel, J. J. Gil, R. Ossikovski, J. Campos , “Synthesis and characterization of depolarizing samples based on the indices of polarimetric purity,” Opt. Lett. 42(20), 4155–4158 (2017). Crossref, Web of ScienceGoogle Scholar
    • 35. A. van Eeckhout, A. Lizana, E. Garcia-Caurel, J. J. Gil, A. Sansa, C. Rodríguez, I. Estévez, E. González, J. C. Escalera, I. Moreno, J. Campos , “Polarimetric imaging of biological tissues based on the indices of polarimetric purity,” J. Biophoton. 11, e201700189 (2017). Crossref, Web of ScienceGoogle Scholar
    • 36. C. Rodriguez, A. van Eeckhout, L. Ferrer, E. Garcia-Caurel, A. Lizana, J. Campos , “Authomatic pseudo-coloring approaches to improve visual perception and contrast in polarimetric images of biological tissues,” Sci. Rep. 12(1), 18479 (2022). Crossref, Web of ScienceGoogle Scholar
    • 37. S. R. Cloude , “Conditions for the physical realizability of matrix operators in polarimetry,” Proc. SPIE 1166, 177–185 (1989). CrossrefGoogle Scholar
    • 38. S. R. Cloude , “Group theory and polarization algebra,” Optik 75, 26–36 (1986). Web of ScienceGoogle Scholar
    • 39. I. San José, J. J. Gil , “Invariant indices of polarimetric purity. Generalized indices of purity for n×n covariance matrices,” Opt. Commun. 284, 38–47 (2011). Crossref, Web of ScienceGoogle Scholar
    • 40. J. J. Gil, E. Bernabeu , “Depolarization and polarization indices of an optical system,” Opt. Acta 33(2), 185–189 (1986). CrossrefGoogle Scholar
    • 41. J. J. Gil , “Review on Mueller matrix algebra for the analysis of polarimetric measurements,” J. Appl. Remote Sens. 8(1), 081599 (2014). Crossref, Web of ScienceGoogle Scholar
    • 42. R. Ossikovski , “Canonical forms of depolarizing Mueller matrices,” J. Opt. Soc. Am. A 27, 123–130 (2010). CrossrefGoogle Scholar
    • 43. R. Ossikovski , “Analysis of depolarizing Mueller matrices through a symmetric decomposition,” J. Opt. Soc. Am. A 26, 1109–1118 (2009). CrossrefGoogle Scholar
    • 44. S. Uchida , “Image processing and recognition for biological images,” Biomed. Develop. Growth Differ. 55, 523–549 (2013). Crossref, Web of ScienceGoogle Scholar
    • 45. B. Charvet, F. Ruggiero, D. Le Guellec , “The development of the myotendinous junction: A review,” Musc. Liga. Tend. J. 2(2), 53–63 (2012). Google Scholar
    • 46. R. James, G. Kesturu, G. Balian, A. B. Chhabra , “Tendon: biology, biomechanics, repair, growth factors, and evolving treatment options,” J. Hand Surg. Am. 33(1), 102–112 (2008). Crossref, Web of ScienceGoogle Scholar
    • 47. S. Schiaffino, C. Reggiani , “Fiber types in mammalian skeletal muscles,” Physiol. Rev. 91(4), 1447–1531 (2011). Crossref, Web of ScienceGoogle Scholar
    • 48. L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone , Classification and Regression Trees, Chapman & Hall, Boca Raton (1984). Google Scholar
    • 49. Y. Guo, T. Hastie, R. Tibshirani , “Regularized linear discriminant analysis and its application in microarrays,” Biostatistics 8(1), 86 (2007). Crossref, Web of ScienceGoogle Scholar
    • 50. T. Mitchell , Machine Learning, McGraw-Hill, NewYork (1997). Google Scholar
    • 51. F. H. Mustafa, M. S. Jaafar , “Comparison of wavelength-dependent penetration depths of lasers in different types of skin in photodynamic therapy,” Indian J. Phys. 87(3), 203–209 (2013). Crossref, Web of ScienceGoogle Scholar
    • 52. A. van Eeckhout, E. Garcia-Caurel, R. Ossikovski, A. Lizana, C. Rodríguez, E. González-Arnay, J. Campos , “Depolarizing spaces for biological tissue classification based on a wavelength combination,” Proc. SPIE 11363, Tissue Optics and Photonics (2020), p. 113631G. CrossrefGoogle Scholar
    • 53. H. H. Jolliff , “Principal component factor analysis,” All Grad. Plan B Rep. 1117 (1968). Google Scholar
    • 54. V. Srinivasarao, U. Ghanekar , “Speech enhancement — an enhanced principal component analysis (EPCA) filter approach,” Comput. Electr. Eng. 85, 106657 (2020). Crossref, Web of ScienceGoogle Scholar
    • 55. T. Fawcett , “An introduction to ROC analysis,” Pattern Recognit. Lett. 27(8), 861–874 (2006). Crossref, Web of ScienceGoogle Scholar
    • 56. J. A. Cook , “ROC curves and nonrandom data,” Pattern Recognit. Lett. 85, 35–41 (2017). Crossref, Web of ScienceGoogle Scholar
    • 57. D. Ivanov, V. Dremin, T. Genova, A. Bykov, T. Novikova, R. Ossikovsky, I. Meglinski , “Polarization-based histopathology classification of ex vivo colon samples supported by machine learning,” Front. Phys. 9, 814787 (2022). Crossref, Web of ScienceGoogle Scholar