World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Effect of laser acupuncture combined with electrical stimulation on recovery from exercise fatigue in mice

    https://doi.org/10.1142/S1793545823500013Cited by:0 (Source: Crossref)

    In sports events, the rapid recovery after high-intensity training or sport competition performance is very important for athletes’ performance and health. The aim of this study is to evaluate the effect of laser acupuncture and electrical stimulation on the recovery from exercise fatigue, using mice with swimming fatigue as experimental model and the electromyography (EMG) and the Raman spectroscopy of blood as evaluation indicators. Root mean square (RMS) and mean power frequency (MPF) of EMG were analyzed after laser acupuncture and electrical stimulation. The amplitude frequency combined analysis (JASA) showed that the proportion of muscles in the fatigue recovery area of the control group, the laser acupuncture group, the multi-channel laser acupuncture group and the laser combined with electrical stimulation group were 34.78%, 39.13%, 39.13% and 43.48%, respectively. Raman spectroscopy of the mice blood during fatigue recovery showed there is a significant difference between the multi-channel laser acupuncture group and the laser combined with electric stimulation group compared with the recovery period and fatigue period (P<0.05) at the peak of 997cm1 and the laser combined electrical stimulation group had a statistical difference in the recovery period compared with the fatigue period (P<0.05) at the peak of 1561cm1. The results showed that laser acupuncture combined with electrical stimulation was beneficial to fatigue recovery in mice, and had the potential value in sports fatigue recovery.

    References

    • 1. B. Tharakan, M. Dhanasekaran, B. V. Manyam , “Antioxidant and DNA protecting properties of anti-fatigue herb Trichopus zeylanicus,” Phytother. Res. 19(8), 669–673 (2010). CrossrefGoogle Scholar
    • 2. L. Kang, P. Liu, A. Peng, B. Sun, B. He , “Application of traditional Chinese therapy in sports medicine,” Sports Med. Health Sci. 3(1), 10–20 (2021). CrossrefGoogle Scholar
    • 3. J. Yang, M. J. Mallory, Q. Wu, S. E. Bublitz, B. A. Bauer , “The safety of laser acupuncture: A systematic review,” Med. Acupunct. 32(4), 209–127 (2020). Crossref, Web of ScienceGoogle Scholar
    • 4. C. L. Lin, Z. Yong , “Application and research progress of low intensity laser therapy in sports medicine,” Chin. J. Sports Med. 39(5), 395–402 (2020). Google Scholar
    • 5. A. Kondo, T. Koyama, J. Ishikawa, T. Yamasaki , “Injury to the spinal cord produced by acupuncture needle,” Surg. Neurol. 11(2), 155–156 (1979). Google Scholar
    • 6. R. C. H. So, J. K. F. Ng, G. Y. F. Ng , “Effect of transcutaneous electrical acupoint stimulation on fatigue recovery of the quadriceps,” Eur. J. Appl. Physiol. 100(6), 693–700 (2007). Crossref, Web of ScienceGoogle Scholar
    • 7. P. Wang, H. Zeng, S. Lin, Z. Zhang, Y. Zhang, J. Hu , “Anti-fatigue activities of hairtail (Trichiurus lepturus) hydrolysate in an endurance swimming mice model,” J. Funct. Foods 74, 104207 (2020). Crossref, Web of ScienceGoogle Scholar
    • 8. J. Zhang, D. Sun , “Surface EMG observation and isokinetic test on pressing-kneading manipulations for exercise fatigue of anterior tibial muscle,” J. Acupunct. Tuina Sci. 9(1), 62–66 (2011). CrossrefGoogle Scholar
    • 9. K. Marri, R. Swaminathan , “Identification of onset of fatigue in Biceps Brachii muscles using surface EMG and multifractal DMA alogrithm,” Biomed. Sci. Instrum. 51, 107–114 (2015). Google Scholar
    • 10. C. J. De Ruiter, M. J. H. Elzinga, P. W. L. Verdijk, W. van Mechelen, A. de Haan , “Changes in force, surface and motor unit EMG during post-exercise development of low frequency fatigue in vastus lateralis muscle,” Eur. J. Appl. Physiol. 94(5), 659–669 (2005). Crossref, Web of ScienceGoogle Scholar
    • 11. D. Roman-Liu , “The influence of confounding factors on the relationship between muscle contraction level and MF and MPF values of EMG signal: A review,” Int. J. Occup. Safety Ergonomics 22(1), 77–91 (2016). Crossref, Web of ScienceGoogle Scholar
    • 12. A. S. Oliveira, M. Gonçalves , “Neuromuscular recovery of the biceps brachii muscle after resistance exercise,” Res. Sports Med. 16(4), 244–256 (2008). CrossrefGoogle Scholar
    • 13. A. Luttmann, M. Jāger, J. SÖkeland, W. Laurig , “Electromyographical study on surgeons in urology. II. Determination of muscular fatigue,” Ergonomics 39(2), 298–313 (1996). Crossref, Web of ScienceGoogle Scholar
    • 14. C. Krafft, T. Knetschke, A. Siegner, R. H. W. Funk, R. Salzera , “Mapping of single cells by near infrared Raman microspectroscopy,” Vib. Spectrosc. 32(1), 75–83 (2003). Crossref, Web of ScienceGoogle Scholar
    • 15. N. Li, H. Zang, H. Sun, X. Jiao, K. Wang, T. C. Y. Liu, Y. Meng , “A noninvasive accurate measurement of blood glucose levels with raman spectroscopy of blood in microvessels,” Molecules 24(8), 1500 (2019). Crossref, Web of ScienceGoogle Scholar
    • 16. H. Zhang, Z. Chen, J. Wu, N. Chen, W. Xu, T. Li, S. Liu , “Laser stimulating ST36 with optical fiber induce blood component changes in mice: A Raman spectroscopy study,” J. Biophoton. 11(6), e201700262 (2018). Crossref, Web of ScienceGoogle Scholar
    • 17. C. J. Saatkamp, M. L. de Almeida, J. A. M. Bispo, A. L. B. Pinheiro, A. B. Fernandes, L. Silveira Jr. , “Quantifying creatinine and urea in human urine through Raman spectroscopy aiming at diagnosis of kidney disease,” J. Biomed. Opt. 21(3), 37001 (2016). Crossref, Web of ScienceGoogle Scholar
    • 18. J. Keul, E. Doll, D. Keppler , “Energy metabolism of human muscle,” Am. J. Phys. Med. Rehabil. 53, 239 (1974). Google Scholar
    • 19. N. Ding, X. Liu, N. Chen, J. Jiang, H. Zhao, Z. Li, J. Zhang, C. Liu , “Lack of association between acupoint sensitization and microcirculatory structural changes in a mouse model of knee osteoarthritis: A pilot study,” J. Biophoton. 12(6), e201800458 (2019). Crossref, Web of ScienceGoogle Scholar
    • 20. A. Tabosa, Y. Yamamura, E. Forno, L. E. A. M. Mello , “Effect of the acupoints ST-36 (Zusanli) and SP-6 (Sanyinjiao) on intestinal myoelectric activity of Wistar rats,” Bra. J. Med. Bio. Res. 35(6), 731–739 (2002). Crossref, Web of ScienceGoogle Scholar
    • 21. J. Wu, Q. Wu, J. Huang, M. Wei, H. Wu, X. Zhou , “Effects of L-malate on physical stamina and activities of enzymes related to the malate-aspartate shuttle in liver of mice,” Physiol. Res. 56(2), 213–220 (2007). Crossref, Web of ScienceGoogle Scholar
    • 22. C. Goossens, R. Weckx, S. Derde, L. V. Helleputte, L. Langouche , “Impact of prolonged sepsis on neural and muscular components of muscle contractions in a mouse model,” J. Cachexia Sarcopenia Muscle 12(2), 443–455 (2021). Crossref, Web of ScienceGoogle Scholar
    • 23. Y. Bai, Z. Yu, S. Yi, Y. Yan, Z. Huang, L. Qiu , “Raman spectroscopy-based biomarker screening by studying the fingerprint characteristics of chronic lymphocytic leukemia and diffuse large B-cell lymphoma,” J. Pharm. Biomed. Anal. 190, 113514 (2020). Crossref, Web of ScienceGoogle Scholar
    • 24. N. Stone, C. Kendall, J. Smith, P. Crow, H. Barr , “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157 (2004). Crossref, Web of ScienceGoogle Scholar
    • 25. I. Notingher, C. Green, C. Dyer, E. Perkins, N. Hopkins, C. Lindsay, L. L. Hench , “Discrimination between ricin and sulphur mustard toxicity in vitro using Raman spectroscopy,” J. R. Soc. Interface 1(1), 79–90 (2004). Crossref, Web of ScienceGoogle Scholar
    • 26. N. Gonzalez-Viveros, J. Castro-Ramos, P. Gomez-Gil, H. H. Cerecedo-Núñez , “Characterization of glycated hemoglobin based on raman spectroscopy and artificial neural networks,” Spectrochim. Acta A 247, 119077 (2021). Crossref, Web of ScienceGoogle Scholar
    • 27. N. Nuntawong, P. Eiamchai, W. Somrang, S. Denchitcharoen, S. Limwichean, M. Horprathum, V. Patthanasettakul, S. Chaiya, A. Leelapojanaporn, S. Saiseng, P. Pongsethasant, P. Chindaudom , “Detection of methamphetamine/amphetamine in human urine based on surface-enhanced Raman spectroscopy and acidulation treatments,” Sens. Actuat. B. Chem. 239, 139–146 (2017). Crossref, Web of ScienceGoogle Scholar
    • 28. R. K. Dukor , Handbook of Vibrational Spectroscopy, Wiley (2006). https://doi.org/10.1002/0470027320.s8107 Google Scholar
    • 29. Z. Huang, A. Mcwilliams, H. Lui David, I. McLean, S. Lam, H. Zeng , “Nearinfrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003). Crossref, Web of ScienceGoogle Scholar
    • 30. W. T. Cheng, M. T. Liu, H. N. Liu, S. Y. Lin , “Micro-Raman spectroscopy used to identify and grade human skin pilomatrixoma,” Microsc. Res. Techniq. 68(2), 75–79 (2005). Crossref, Web of ScienceGoogle Scholar
    • 31. C. Zhang, X. Cui, J. Yang, X. Shao, Y. Zhang, D. Liu , “Stimulus-responsive surface-enhanced Raman scattering: A “Trojan horse” strategy for precision molecular diagnosis of cancer,” Chem. Sci. 11(24), 6111–6120 (2020). Crossref, Web of ScienceGoogle Scholar
    • 32. F. Huang, J. Kong, J. Ju, Y. Zhang, Y. Guo, Y. Cheng, H. Qian, Y. Xie, W. Yao , “Membrane damage mechanism contributes to inhibition of trans-cinnamaldehyde on Penicillium italicum using Surface-Enhanced Raman Spectroscopy (SERS),” Sci. Rep. 9(1), 1–10 (2019). Google Scholar
    • 33. R. Malini, K. Venkatakrishna, J. Kurien, K. M. Pai, L. Rao, V. B. Kartha, C. M. Krishna , “Discrimination of normal, inflammatory, premalignant, and malignant oral tissue: A Raman spectroscopy study,” Biopolymers: Ori. Res. Biomol. 81(3), 179–193 (2006). Crossref, Web of ScienceGoogle Scholar
    • 34. D. Naumann , “Infrared and NIR Raman spectroscopy in medical microbiology,” Proc. SPIE 3257, Infrared Spectroscopy: New Tool in Medicine, pp. 245–257 (1998). Google Scholar
    • 35. J. Lukose, N. Mithun, G. Mohan, S. Shastry, S. Chidangil , “Normal saline-induced deoxygenation of red blood cells probed by optical tweezers combined with the micro-Raman technique,” RSC Adv. 9(14), 7878–7884 (2019). Crossref, Web of ScienceGoogle Scholar
    • 36. N. H. Mohamed, E. El-Gharoury, H. Allam, G. A. Helmy, E. N. Zikri, A. Elgendy , “Evaluation of clinical parameters in knee osteoarthritis patients treated with laser acupuncture versus those exposed to sham laser,” Med. Res. J. 15(2), 63–68 (2016). CrossrefGoogle Scholar
    • 37. A. Hecksteden, S. Skorski, S. Schwindling, D. Hammes, M. Pfeiffer, M. Kellmann, A. Ferrauti, T. Meyer , “Blood-borne markers of fatigue in competitive athletes–results from simulated training camps,” PloS One 11(2), e0148810 (2016). Crossref, Web of ScienceGoogle Scholar
    • 38. R. Nowak, R. Buryta, D. Kostrzewa-Nowak , “The search for new diagnostic markers of metabolic response to aerobic exercise: Analysis of creatinine, urea, and uric acid levels in football players,” Trends Sport Sci. 23(4), 167–175 (2016). Google Scholar
    • 39. A. Nowakowska, D. Kostrzewa-Nowak, R. Buryta, R. Nowak , “Blood biomarkers of recovery efficiency in soccer players,” Int. J. Environ. Res. Public Health 16(18), 3279 (2019). Crossref, Web of ScienceGoogle Scholar
    • 40. Y. H. Qiang , “Study on the effect of acupuncture and physiotherapy on the recovery of exercise-induced fatigue of long-distance runners,” Sporting Goods Techn. (17), 50–51 (2020). Google Scholar
    • 41. M. L. Mestek, J. C. Garner, E. P. Plaisance, J. K. Taylor, S. Alhassan, P. W. Grandjean , “Blood lipid responses after continuous and accumulated aerobic exercise,” Int. J. Sport Nutr. Exerc. Metab. 16(3), 245–254 (2006). Crossref, Web of ScienceGoogle Scholar
    • 42. L. H. Wang, W. Huang, D. Wei, D. G. Ding, Y. R. Liu, J. J. Wang, Z. Y. Zhou , “Mechanisms of acupuncture therapy for simple obesity: An evidence-based review of clinical and animal studies on simple obesity,” Evid-based Compl. Alt. 2019, 5796381 (2019). Web of ScienceGoogle Scholar
    • 43. S. W. Zhu, D. Xu, Y. Xiang, L. Ding , “EMG analysis of acupuncture relieving muscle fatigue,” Space Med. Med. Eng. 31(3), 347–352 (2018). Google Scholar
    • 44. C. Orizio, R. Perini, A. Veicsteinas , “Changes of muscular sound during sustained isometric contraction up to exhaustion,” J. Appl. Physiol. 66(4), 1593–1598 (1989). Crossref, Web of ScienceGoogle Scholar