World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Comparison of uniform resampling and nonuniform sampling direct-reconstruction methods in k-space for FD-OCT

    https://doi.org/10.1142/S1793545823500025Cited by:0 (Source: Crossref)

    The nonuniform distribution of interference spectrum in wavenumber k-space is a key issue to limit the imaging quality of Fourier-domain optical coherence tomography (FD-OCT). At present, the reconstruction quality at different depths among a variety of processing methods in k-space is still uncertain. Using simulated and experimental interference spectra at different depths, the effects of common six processing methods including uniform resampling (linear interpolation (LI), cubic spline interpolation (CSI), time-domain interpolation (TDI), and K-B window convolution) and nonuniform sampling direct-reconstruction (Lomb periodogram (LP) and nonuniform discrete Fourier transform (NDFT)) on the reconstruction quality of FD-OCT were quantitatively analyzed and compared in this work. The results obtained by using simulated and experimental data were coincident. From the experimental results, the averaged peak intensity, axial resolution, and signal-to-noise ratio (SNR) of NDFT at depth from 0.5 to 3.0mm were improved by about 1.9dB, 1.4 times, and 11.8dB, respectively, compared to the averaged indices of all the uniform resampling methods at all depths. Similarly, the improvements of the above three indices of LP were 2.0dB, 1.4 times, and 11.7dB, respectively. The analysis method and the results obtained in this work are helpful to select an appropriate processing method in k-space, so as to improve the imaging quality of FD-OCT.

    References

    • 1. H. Hossein, C. C. Rosa , “Numerical study on spectral domain optical coherence tomography spectral calibration and re-sampling importance,” Photon. Sens. 3(1), 35–43 (2013). CrossrefGoogle Scholar
    • 2. S. Z. Yang, L. W. Liu, Y. X. Chang, N. N. Zhang, K. Liu, L. Hong, B. L. Chen, Y. Zhao, R. Hu, J. L. Qu , “In vivo mice brain microcirculation monitoring based on contrast-enhanced SD-OCT,” J. Innov. Opt. Health Sci. 12(1), 1950001 (2019). Link, Web of ScienceGoogle Scholar
    • 3. F. J. Xing, J. H. Lee, C. Polucha, J. Lee , “Three-dimensional imaging of spatio-temporal dynamics of small blood capillary network in the cortex based on optical coherence tomography: A review,” J. Innov. Opt. Health Sci. 13(1), 2030002 (2020). Link, Web of ScienceGoogle Scholar
    • 4. A. Abdurashitov, V. Tuchin, O. Semyachkina-Glushkovskaya , “Photodynamic therapy of brain tumors and novel optical coherence tomography strategies for in vivo monitoring of cerebral fluid dynamics,” J. Innov. Opt. Health Sci. 13(2), 2030004 (2020). Link, Web of ScienceGoogle Scholar
    • 5. R. Leitgeb, F. Placzek, E. Rank, L. Krainz, R. Haindl, Q. Li, M. Liu, M. Andreana, A. Unterhuber, T. Schmoll, W. Drexler , “Enhanced medical diagnosis for doctors: A perspective of optical coherence tomography,” J. Biomed. Opt. 26(10), 100601 (2021). Crossref, Web of ScienceGoogle Scholar
    • 6. E. Auksorius, D. Borycki, P. Stremplewski, K. Liewski, S. Tomczewski, P. Niedźwiedziuk, B. Sikorski, M. Wojtkowski , “In vivo imaging of human cornea with high-speed and high-resolution Fourier-domain full-field optical coherence tomography,” Biomed. Opt. Exp. 11(5), 2849–2865 (2020). Crossref, Web of ScienceGoogle Scholar
    • 7. F. Faraldi, C. A. Lavia, M. Nassisi, R. A. Kilian, D. Bacherini, S. Rizzo , “Swept-source OCT reduces the risk of axial length measurement errors in eyes with cataract and epiretinal membranes,” PLOS ONE 16(9), e0257654 (2021). Crossref, Web of ScienceGoogle Scholar
    • 8. K. Nagib, B. Mezgebo, N. Fernando, B. Kordi, S. S. Sherif , “Generalized image reconstruction in optical coherence tomography using redundant and non-uniformly-spaced samples,” Sensors 21(7057), 1–14 (2021). Google Scholar
    • 9. N. Uribe-Patarroyo, S. H. Kassani, M. Villiger, B. E. Bouma , “Robust wavenumber and dispersion calibration for Fourier-domain optical coherence tomography,” Opt. Exp. 26(7), 9081–9094 (2018). Crossref, Web of ScienceGoogle Scholar
    • 10. R. Leitgeb, C. K. Hitzenberger, A. F. Fercher , “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Exp. 11(8), 889–894 (2003). Crossref, Web of ScienceGoogle Scholar
    • 11. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A. F. Fercher , “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002). Crossref, Web of ScienceGoogle Scholar
    • 12. C. Ding, P. Bu, X. Z. Wang, O. Sasaki , “A new spectral calibration method for Fourier domain optical coherence tomography,” Optik 121, 965–970 (2010). Crossref, Web of ScienceGoogle Scholar
    • 13. K. Wang, Z. H. Ding , “Spectral calibration in spectral domain optical coherence tomography,” Chin. Opt. Letts. 6(12), 902–904 (2008). Crossref, Web of ScienceGoogle Scholar
    • 14. X. L. Zhang, W. R. Gao, H. Y. Bian, C. L. Chen, J. L. Liao , “Self-spectral calibration for spectral domain optical coherence tomography,” Opt. Eng. 52(6), 063603-1-7 (2013). Crossref, Web of ScienceGoogle Scholar
    • 15. M. A. Choma, K. Hsu, J. A. Izatt , “Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source,” J. Biomed. Opt. 10(4), 044009-1-6 (2005). Crossref, Web of ScienceGoogle Scholar
    • 16. C. M. Eigenwillig, B. R. Biedermann, G. Palte, R. Huber , “K-space linear Fourier domain mode locked laser and applications for optical coherence tomography,” Opt. Exp. 16(12), 8916–8937 (2008). Crossref, Web of ScienceGoogle Scholar
    • 17. A. M. Davis, M. A. Choma, J. A. Izatt , “Heterodyne swept-source optical coherence tomography for complete complex conjugate ambiguity removal,” J. Biomed. Opt. 10(6), 064005 (2005). Crossref, Web of ScienceGoogle Scholar
    • 18. J. Ren, H. K. Gille, J. Wu, C. H. Yang , “Ex vivo optical coherence tomography imaging of collector channels with a scanning endoscopic probe,” Invest. Opth. Vis. Sci. 52(7), 3921–3925 (2011). Crossref, Web of ScienceGoogle Scholar
    • 19. J. F. Xi, L. Huo, J. S. Li, X. D. Li , “Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography,” Opt. Exp. 18(9), 9511–9517 (2011). Crossref, Web of ScienceGoogle Scholar
    • 20. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, J. G. Fujimoto , “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photon. 1(12), 709–716 (2007). Crossref, Web of ScienceGoogle Scholar
    • 21. M. Mujat, B. H. Park, B. Cense, T. C. Chen, J. F. D. Boer , “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007). Crossref, Web of ScienceGoogle Scholar
    • 22. Z. Q. Xu, C. Lionel, M. Roman , “A zero-crossing detection method applied to Doppler OCT,” Opt. Exp. 16, 4394–4412 (2008). Crossref, Web of ScienceGoogle Scholar
    • 23. T. Wu, Z. H. Ding, L. Wang, M. H. Chen , “Spectral phase based k-domain interpolation for uniform sampling in swept-source optical coherence tomography,” Opt. Exp. 19, 18430–18439 (2011). Crossref, Web of ScienceGoogle Scholar
    • 24. M. Szkulmowski, M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, W. Wasilewski, A. Kowalczyk, C. Radzewicz , “Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source,” Opt. Commun. 246(4–6), 569–578 (2005). Crossref, Web of ScienceGoogle Scholar
    • 25. Y. Chen, H. Zhao, Z. Wang , “Investigation on spectral-domain optical coherence tomography using a tungsten halogen lamp as light source,” Opt. Rev. 16(1), 26–29 (2009). Crossref, Web of ScienceGoogle Scholar
    • 26. A. R. Tumlinson, B. Hofer, A. M. Winkler, B. Považay, W. Drexler, J. K. Barton , “Inherent homogenous media dispersion compensation in frequency domain optical coherence tomography by accurate k-sampling,” Appl. Opt. 47(5), 687–693 (2008). Crossref, Web of ScienceGoogle Scholar
    • 27. D. Hillmann, G. Huttmann, P. Koch , Using nonequispaced fast Fourier transformation to process optical coherence tomography signals, Proc. SPIE 7372 on Optical Coherence Tomography and Coherence Techniques IV, (OPTICA Publishing Group, Munich, Germany, 2009), pp. 73720R1-6. CrossrefGoogle Scholar
    • 28. N. R. Lomb , “Least-squares frequency analysis of unequally spaced data,” Astrophys. Space Sci. 39(2), 447–462 (1976). Crossref, Web of ScienceGoogle Scholar
    • 29. T. Wu, Z. H. Ding, K. Wang, C. Wang , “Swept source optical coherence tomography based on nonuniform discrete Fourier transform,” Chin. Opt. Lett. 7(10), 941–944 (2009). Crossref, Web of ScienceGoogle Scholar
    • 30. T. Han, J. R. Qiu, D. Wang, J. Meng, Z. Y. Liu, Z. H. Ding , “Constrained polynomial fit-based k-domain interpolation in swept-source optical coherence tomography,” J. Innov. Opt. Health Sci. 14(1), 2140008 (2021). Link, Web of ScienceGoogle Scholar
    • 31. A. Liu, R. Wang, K. L. Thornburg, S. Rugonyi , “Efficient postacquisition synchronization of 4-D nongated cardiac images obtained from optical coherence tomography: Application to 4-D reconstruction of the chick embryonic heart,” J. Biomed. Opt. 14(4), 044020–044011 (2009). Crossref, Web of ScienceGoogle Scholar
    • 32. S. Vergnole, D. Lévesque, G. Lamouche , “Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography,” Opt. Exp. 18(10), 10447–10461 (2010). Crossref, Web of ScienceGoogle Scholar
    • 33. B. E. Bouma, J. F. de Boer, D. Huang, I. K. Jang, T. Yonetsu, C. L. Leggett, R. Leitgeb, D. D. Sampson, M. Suter, B. J. Vakoc, M. Villiger, M. Wojtkowski , “Optical coherence tomography,” Nat. Rev. Meth. Primers 2(1), 79 (2022). CrossrefGoogle Scholar
    • 34. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery , Numerical Recipes in Fortran, Cambridge University Publishing, New York (1992). Google Scholar
    • 35. Y. D. Zhang, X. Q. Li, L. Wei, K. Wang, Z. H. Ding, G. H. Shi , “Time-domain interpolation for Fourier-domain optical coherence tomography,” Opt. Lett. 34(12), 1849–1851 (2009). Crossref, Web of ScienceGoogle Scholar
    • 36. J. I. Jackson, C. H. Meyer, D. G. Nishimura, A. Macovski , “Selection of a convolution function for Fourier inversion using gridding computerised tomography application,” IEEE Trans. Med. Imaging 10(3), 473–478 (1991). Crossref, Web of ScienceGoogle Scholar
    • 37. P. J. Beatty, D. G. Nishimura, J. M. Pauly , “Rapid gridding reconstruction with a minimal oversampling ratio,” IEEE Trans. Med. Imaging 24(6), 799–808 (2005). Crossref, Web of ScienceGoogle Scholar
    • 38. K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, L. Xu , “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Exp. 17(14), 12121–12131 (2009). Crossref, Web of ScienceGoogle Scholar
    • 39. J. Y. Fan, F. Gao, W. Kong, H. W. Li, G. H. Shi , “A full spectrum resampling method in polygon tunable laser-based swept-source optical coherence tomography,” Acta. Phys. Sin. 66(11), 114204 (2017). Crossref, Web of ScienceGoogle Scholar
    • 40. Y. Yang, X. Yue, Y. Zhang , “Optimal processing sequence and method combination of linear resampling and spectral shaping in swept-source optical coherence tomography,” Opt. Commun. 484, 126677 (2021). Crossref, Web of ScienceGoogle Scholar