World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

High-throughput sorting of two-color fluorescent-labeled zebrafish embryos

    https://doi.org/10.1142/S1793545823500037Cited by:0 (Source: Crossref)

    The zebrafish embryos were widely employed in genetics, development and drug discovery studies as miniatured animal models. Sorting of two-color fluorescent embryos is often required in large-scale experiments but it is challenging to manually sort with high efficiency. Here, we reported a high-throughput sorting system for two-color fluorescent zebrafish embryos. The embryos can be automatically loaded from a sample pool and sorted based on the average fluorescent intensity. The two-color fluorescent signals were split into two lines and detected by an area array camera. The system achieves the sorting of 100 embryos in less than 10min with an accuracy of greater than 95%.

    References

    • 1. A. J. Hill, H. Teraoka, W. Heideman, R. E. Peterson , “Zebrafish as a model vertebrate for investigating chemical toxicity,” Toxicol. Sci. 86(1), 6–19 (2005). Crossref, Web of ScienceGoogle Scholar
    • 2. E. Ellertsdóttir, A. Lenard, Y. Blum, A. Krudewig, L. Herwig, M. Affolter, H. G. Belting , “Vascular morphogenesis in the zebrafish embryo,” Dev. Biol. 341(1), 56–65 (2010). Crossref, Web of ScienceGoogle Scholar
    • 3. J. F. Amatruda, J. L. Shepard, H. M. Stern, L. I. Zon , “Zebrafish as a cancer model system,” Cancer Cell 1(3), 229–231 (2002). Crossref, Web of ScienceGoogle Scholar
    • 4. L. I. Zon and R. T. Peterson , “In vivo drug discovery in the zebrafish,” Nat. Rev. Drug Discov. 4(1), 35–44 (2005). Crossref, Web of ScienceGoogle Scholar
    • 5. D. Li, X. Zhao, W. Qin, H. Zhang, Y. Fei, L. Liu, K. Yong, G. Chen, B. Z. Tang, J. Qian , “Toxicity assessment and long-term three-photon fluorescence imaging of bright aggregation-induced emission nanodots in zebrafish,” Nano Res. 9(7), 1921–1933 (2016). Crossref, Web of ScienceGoogle Scholar
    • 6. N. D. Meeker and N. S. Trede , “Immunology and zebrafish: Spawning new models of human disease,” Dev. Comp. Immunol. 32(7), 745–757 (2008). Crossref, Web of ScienceGoogle Scholar
    • 7. T. Y. Chang, C. Pardo-Martin, A. Allalou, C. Wählby, M. F. Yanik , “Fully automated cellular-resolution vertebrate sorting platform with parallel animal processing,” Lab Chip 12(4), 711–716 (2012). Crossref, Web of ScienceGoogle Scholar
    • 8. S. F. Graf, S. Hötzel, U. Liebel, A. Stemmer, H. F. Knapp , “Image-based fluidic sorting system for automated zebrafish egg sorting into multiwell plates,” J. Lab. Autom. 16(2), 105–111 (2011). CrossrefGoogle Scholar
    • 9. H. Breitwieser, M. Thomas, M. Vogt Ferg, C. Pylatiuk , “Fully automated pipetting sorting system for different morphological phenotypes of zebrafish embryos,” SLAS Technol., Transl. Life Sci. Innov. 23(2), 128–133 (2017). Web of ScienceGoogle Scholar
    • 10. A. Vogt, A. Cholewinski, X. Shen, S. G. Nelson, J. S. Lazo, M. Tsang, N. A. Hukriede , “Automated image-based phenotypic analysis in zebrafish embryos,” Dev. Dyn. 238(3), 656–663 (2009). Crossref, Web of ScienceGoogle Scholar
    • 11. Y. Guo, W. J. Veneman, H. P. Spaink, F. J. Verbeek , “Three-dimensional reconstruction and measurements of zebrafish larvae from high-throughput axial-view in vivo imaging,” Biomed. Opt. Express 8(5), 2611–2634 (2017). Crossref, Web of ScienceGoogle Scholar
    • 12. I. Lee, J. Hsu, Y. Chuang, I. Liau , “Confocal imaging guided photochemical thrombosis toward the development of a novel zebrafish model of stroke,” 2016 Asia Communications and Photonics Conf., pp. 1–3, IEEE (2016). CrossrefGoogle Scholar
    • 13. W. Yang, W. Wang, L. Jing, S.-L. Chen , “Label-free photoacoustic microscopy: A potential tool for the live imaging of blood disorders in zebrafish,” Biomed. Opt. Express 12(6), 3643–3649 (2021). Crossref, Web of ScienceGoogle Scholar
    • 14. A. Pfriem, C. Pylatiuk, R. Alshut, B. Ziegener, S. Schulz, G. Bretthauer , “A modular, low-cost robot for zebrafish handling,” 2012 Annual Int. Conf. IEEE Engineering in Medicine and Biology Society, pp. 980–983, IEEE (2012). CrossrefGoogle Scholar
    • 15. E. J. Gualda, H. Pereira, T. Vale, M. F. Estrada, C. Brito, N. Moreno , “SPIM-fluid: Open source light-sheet-based platform for high-throughput imaging,” Biomed. Opt. Express 6(11), 4447–4456 (2015). Crossref, Web of ScienceGoogle Scholar
    • 16. P. J. Keller, A. D. Schmidt, J. Wittbrodt, E. H. K. Stelzer , “Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy,” Science 322(5904), 1065–1069 (2008). Crossref, Web of ScienceGoogle Scholar
    • 17. T. V. Truong, W. Supatto, D. S. Koos, J. M. Choi, S. E. Fraser , “Deep and fast live imaging with two-photon scanned light-sheet microscopy,” Nat. Methods 8(9), 757–760 (2011). Crossref, Web of ScienceGoogle Scholar
    • 18. M. Weber and J. Huisken , “Light sheet microscopy for real-time developmental biology,” Curr. Opin. Genet. Dev. 21(5), 566–572 (2011). Crossref, Web of ScienceGoogle Scholar
    • 19. C. Pardo-Martin, T.-Y. Chang, B. K. Koo, C. L. Gilleland, S. C. Wasserman, M. F. Yanik , “High-throughput in vivo vertebrate screening,” Nat. Methods 7(8), 634–636 (2010). Crossref, Web of ScienceGoogle Scholar
    • 20. S. Takanezawa, T. Saitou, T. Imamura , “Wide field light-sheet microscopy with lens-axicon controlled two-photon Bessel beam illumination,” Nat. Commun. 12(1), 2979 (2021). Crossref, Web of ScienceGoogle Scholar