World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Transmissive multifocal laser speckle contrast imaging through thick tissue

    https://doi.org/10.1142/S1793545823500050Cited by:1 (Source: Crossref)

    Laser speckle contrast imaging (LSCI) is a powerful tool for monitoring blood flow changes in tissue or vessels in vivo, but its applications are limited by shallow penetration depth under reflective imaging configuration. The traditional LSCI setup has been used in transmissive imaging for depth extension up to 2lt3lt (lt is the transport mean free path), but the blood flow estimation is biased due to the depth uncertainty in large depth of field (DOF) images. In this study, we propose a transmissive multifocal LSCI for depth-resolved blood flow in thick tissue, further extending the transmissive LSCI for tissue thickness up to 12lt. The limited-DOF imaging system is applied to the multifocal acquisition, and the depth of the vessel is estimated using a robust visibility parameter Vr in the coherent domain. The accuracy and linearity of depth estimation are tested by Monte Carlo simulations. Based on the proposed method, the model of contrast analysis resolving the depth information is established and verified in a phantom experiment. We demonstrated its effectiveness in acquiring depth-resolved vessel structures and flow dynamics in in vivo imaging of chick embryos.

    References

    • 1. D. A. Boas, A. K. Dunn , “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15(1), 011109 (2010). Crossref, Web of ScienceGoogle Scholar
    • 2. P. Miao, N. Li, N. V. Thakor, S. Tong , “Random process estimator for laser speckle imaging of cerebral blood flow,” Opt. Express 18(1), 218–236 (2010). Crossref, Web of ScienceGoogle Scholar
    • 3. W. Heeman, W. Steenbergen, G. M. van Dam, E. C. Boerma , “Clinical applications of laser speckle contrast imaging: A review,” J. Biomed. Opt. 24(8), 080901 (2019). Crossref, Web of ScienceGoogle Scholar
    • 4. S. M. S. Kazmi, E. Faraji, M. A. Davis, Y.-Y. Huang, X. J. Zhang, A. K. Dunn , “Flux or speed? Examining speckle contrast imaging of vascular flows,” Biomed. Opt. Express 6(7), 2588–2608 (2015). Crossref, Web of ScienceGoogle Scholar
    • 5. M. A. Davis, S. M. S. Kazmi, A. K. Dunn , “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19(8), 1–10 (2014). Crossref, Web of ScienceGoogle Scholar
    • 6. P. Miao, Z. Chao, Y. Zhang, N. Li, N. V. Thakor , “Entropy analysis reveals a simple linear relation between laser speckle and blood flow,” Opt. Lett. 39(13), 3907–3910 (2014). Crossref, Web of ScienceGoogle Scholar
    • 7. D.-Y. Li, Q. Xia, T.-T. Yu, J.-T. Zhu, D. Zhu , “Transmissive-detected laser speckle contrast imaging for blood flow monitoring in thick tissue: from monte carlo simulation to experimental demonstration,” Light Sci. Appl. 10(1), 1–15 (2021). Crossref, Web of ScienceGoogle Scholar
    • 8. J. N. Hansen, A. Gong, D. Wachten, R. Pascal, A. Turpin, J. F. Jikeli, U. B. Kaupp, L. Alvarez , “Multifocal imaging for precise, label-free tracking of fast biological processes in 3D,” Nat. Commun. 12(1), 4574 (2021). Crossref, Web of ScienceGoogle Scholar
    • 9. S. Zheng, S. Xiao, L. Kretsge, A. Cruz-Martín, J. Mertz , “Depth resolution in multifocus laser speckle contrast imaging,” Opt. Lett. 46(19), 5059–5062 (2021). Crossref, Web of ScienceGoogle Scholar
    • 10. I. Sigal, R. Gad, A. M. Caravaca-Aguirre, Y. Atchia, D. B. Conkey, R. Piestun, O. Levi , “Laser speckle contrast imaging with extended depth of field for in-vivo tissue imaging,” Biomed. Opt. Express 5(1), 123–135 (2014). Crossref, Web of ScienceGoogle Scholar
    • 11. D. Ringuette, I. Sigal, R. Gad, O. Levi , “Reducing misfocus-related motion artefacts in laser speckle contrast imaging,” Biomed. Opt. Express 6(1), 266–276 (2015). Crossref, Web of ScienceGoogle Scholar
    • 12. E. Du, S. Shen, A. Qiu, N. Chen , “Depth-dependent microscopic flow imaging with line scan laser speckle acquisition and analysis,” in Optics in Health Care and Biomedical Optics XI, Q. LuoX. LiY. GuD. Zhu, Eds., pp. 20–26, International Society for Optics and Photonics (2021). CrossrefGoogle Scholar
    • 13. C. Liu, K. Kiliç, S. E. Erdener, D. A. Boas, D. D. Postnov , “Choosing a model for laser speckle contrast imaging,” Biomed. Opt. Express 12(6), 3571–3583 (2021). Crossref, Web of ScienceGoogle Scholar
    • 14. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, A. K. Dunn , “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16(3), 1975–1989 (2008). Crossref, Web of ScienceGoogle Scholar
    • 15. Y. Zhang, C. Wang, S. Tong, P. Miao , “Separating single-and multiple-scattering components in laser speckle contrast imaging of tissue blood flow,” Biomed. Opt. Express 13(5), 2881–2895 (2022). Crossref, Web of ScienceGoogle Scholar
    • 16. D. D. Postnov, J. Tang, S. E. Erdener, K. Kılıç, D. A. Boas , “Dynamic light scattering imaging,” Sci. Adv. 6(45), eabc4628 (2020). Crossref, Web of ScienceGoogle Scholar
    • 17. C. Z. Jafari, C. T. Sullender, D. R. Miller, S. A. Mihelic, A. K. Dunn , “Effect of vascular structure on laser speckle contrast imaging,” Biomed. Opt. Express 11(10), 5826–5841 (2020). Crossref, Web of ScienceGoogle Scholar
    • 18. D. D. Postnov, X. Cheng, S. E. Erdener, D. A. Boas , “Choosing a laser for laser speckle contrast imaging,” Sci. Rep. 9(1), 1–6 (2019). Crossref, Web of ScienceGoogle Scholar
    • 19. P. Miao, Y. Zhang, C. Wang, S. Tong , “Random matrix description of dynamically backscattered coherent waves propagating in a wide-field-illuminated random medium,” Appl. Phys. Lett. 120(4), 043701 (2022). Crossref, Web of ScienceGoogle Scholar
    • 20. H. Tazawa, S. Nakagawa , “Response of egg temperature, heart rate and blood pressure in the chick embryo to hypothermal stress,” J. Comp. Physiol. B 155(2), 195–200 (1985). Crossref, Web of ScienceGoogle Scholar
    • 21. T. Dragojević, D. Bronzi, H. M. Varma, C. P. Valdes, C. Castellvi, F. Villa, A. Tosi, C. Justicia, F. Zappa, T. Durduran , “High-speed multi-exposure laser speckle contrast imaging with a single-photon counting camera,” Biomed. Opt. Express 6(8), 2865–2876 (2015). Crossref, Web of ScienceGoogle Scholar
    • 22. K. Khaksari, S. J. Kirkpatrick , “Combined effects of scattering and absorption on laser speckle contrast imaging,” J. Biomed. Opt. 21(7), 076002 (2016). Crossref, Web of ScienceGoogle Scholar
    • 23. R. F. Spaide, J. G. Fujimoto, N. K. Waheed, S. R. Sadda, G. Staurenghi , “Optical coherence tomography angiography,” Prog. Retin. Eye Res. 64, 1–55 (2018). Crossref, Web of ScienceGoogle Scholar
    • 24. H. M. Varma, C. P. Valdes, A. K. Kristoffersen, J. P. Culver, T. Durduran , “Speckle contrast optical tomography: a new method for deep tissue three-dimensional tomography of blood flow,” Biomed. Opt. Express 5(4), 1275–1289 (2014). Crossref, Web of ScienceGoogle Scholar
    • 25. H. Chen, Y. Shi, B. Bo, D. Zhao, P. Miao, S. Tong, C. Wang , “Real-time cerebral vessel segmentation in laser speckle contrast image based on unsupervised domain adaptation,” Front. Neurosci. 15, 755198 (2021). Crossref, Web of ScienceGoogle Scholar