Quantitative SERS Detection of Trace Glutathione with Internal Reference Embedded Au-core/Ag-shell Nanoparticles
Abstract
Surface-enhanced Raman scattering (SERS) has been widely studied and applied for over three decades. However, reliable SERS detection of molecules with low polarizability is still suffering from poor sensitivity and reproducibility. In this paper, we have reported a new strategy for performing quantitative SERS detection of Raman insensitive Glutathione (GSH), based on GSH-induced replacement of a highly Raman sensitive four-mercaptopyridine (MP) adsorbed on the surface of four-aminothiophenol (ATP) embedded Au-core/Ag-shell particles. This replacement led to a strong decrease of the MP SERS signal, which was used to determine the concentration of GSH. The adoption of GSH-induced Raman probe replacement leads to high sensitivity, while the use of internal reference method provides an improved accuracy of the GSH quantification.