World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Tailless Flapping Wing MAV Performing Monocular Visual Servoing Tasks

    https://doi.org/10.1142/S2301385020500235Cited by:8 (Source: Crossref)
    This article is part of the issue:

    In the field of robotics, a major challenge is achieving high levels of autonomy with small vehicles that have limited mass and power budgets. The main motivation for designing such small vehicles is that compared to their larger counterparts, they have the potential to be safer, and hence be available and work together in large numbers. One of the key components in micro robotics is efficient software design to optimally utilize the computing power available. This paper describes the computer vision and control algorithms used to achieve autonomous flight with the 30g tailless flapping wing robot, used to participate in the International Micro Air Vehicle Conference and Competition (IMAV 2018) indoor microair vehicle competition. Several tasks are discussed: line following, circular gate detection and fly through. The emphasis throughout this paper is on augmenting traditional techniques with the goal to make these methods work with limited computing power while obtaining robust behavior.

    This paper was recommended for publication in its revised form by editorial board member, Pascual Campoy.