Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    THE PARALLEL CRANK-ROCKER FLAPPING MECHANISM: AN INSECT-INSPIRED DESIGN FOR MICRO AIR VEHICLES

    This paper presents a novel micro air vehicle (MAV) design that seeks to reproduce the unsteady aerodynamics of insects in their natural flight. The challenge of developing an MAV capable of hovering and maneuvering through indoor environments has led to bio-inspired flapping propulsion being considered instead of conventional fixed or rotary winged flight. Insects greatly outperform these conventional flight platforms by exploiting several unsteady aerodynamic phenomena. Therefore, reproducing insect aerodynamics by mimicking their complex wing kinematics with a miniature flying robot has significant benefits in terms of flight performance. However, insect wing kinematics are extremely complex and replicating them requires optimal design of the actuation and flapping mechanism system. A novel flapping mechanism based on parallel crank-rockers has been designed that accurately reproduces the wing kinematics employed by insects and also offers control for flight maneuvers. The mechanism has been developed into an experimental prototype with MAV scale wings (75 mm long). High-speed camera footage of the non-airborne prototype showed that its wing kinematics closely matched desired values, but that the wing beat frequency of 5.6 Hz was below the predicted value of 15 Hz. Aerodynamic testing of the prototype in hovering conditions was completed using a load cell and the mean lift force at the maximum power output was measured to be 23.8 mN.

  • articleNo Access

    A Tailless Flapping Wing MAV Performing Monocular Visual Servoing Tasks

    Unmanned Systems19 Aug 2020

    In the field of robotics, a major challenge is achieving high levels of autonomy with small vehicles that have limited mass and power budgets. The main motivation for designing such small vehicles is that compared to their larger counterparts, they have the potential to be safer, and hence be available and work together in large numbers. One of the key components in micro robotics is efficient software design to optimally utilize the computing power available. This paper describes the computer vision and control algorithms used to achieve autonomous flight with the 30g tailless flapping wing robot, used to participate in the International Micro Air Vehicle Conference and Competition (IMAV 2018) indoor microair vehicle competition. Several tasks are discussed: line following, circular gate detection and fly through. The emphasis throughout this paper is on augmenting traditional techniques with the goal to make these methods work with limited computing power while obtaining robust behavior.