World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
Special Issue on Advanced Air Mobility: Enabling Technologies and Applications
Editors: Junfei Xie, Yan Wan and Hao Liu
No Access

Efficient Box Approximation for Data-Driven Probabilistic Geofencing

    https://doi.org/10.1142/S2301385024410024Cited by:2 (Source: Crossref)

    Advanced Air Mobility (AAM) using electrical vertical take-off and landing (eVTOL) aircraft is an emerging way of air transportation within metropolitan areas. A key challenge for the success of AAM is how to manage large-scale flight operations with safety guarantees in high-density, dynamic, and uncertain airspace environments in real time. To address these challenges, we introduce the concept of a data-driven probabilistic geofence, which can guarantee that the probability of potential conflicts between eVTOL aircraft is bounded under data-driven uncertainties. To evaluate the probabilistic geofences online, Kernel Density Estimation (KDE) based on Fast Fourier Transform (FFT) is customized to model data-driven uncertainties. Based on the FFT-KDE values from data-driven uncertainties, we introduce an optimization framework of Integer Linear Programming (ILP) to find a parallelogram box to approximate the data-driven probabilistic geofence. To overcome the computational burden of ILP, an efficient heuristic algorithm is further developed. Numerical results demonstrate the feasibility and efficiency of the proposed algorithms.

    This paper was recommended for publication in its revised form by Special Issue Editors, Junfei Xie, Yan Wan and Hao Liu.