World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Low-Rank Iteration Schemes for the Multi-Frequency Solution of Acoustic Boundary Element Equations

    https://doi.org/10.1142/S2591728521500043Cited by:9 (Source: Crossref)

    The implicit frequency dependence of linear systems arising from the acoustic boundary element method necessitates an efficient treatment for problems in a frequency range. Instead of solving the linear systems independently at each frequency point, this paper is concerned with solving them simultaneously at multiple frequency points within a single iteration scheme. The proposed concept is based on truncation of the frequency range solution and is incorporated into two well-known iterative solvers - BiCGstab and GMRes. The proposed method is applied to two acoustic interior problems as well as to an exterior problem in order to assess the underlying approximations and to study the convergence behavior. While this paper provides the proof of concept, its application to large-scale acoustic problems necessitates efficient preconditioning for multi-frequency systems, which are yet to be developed.