World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

A Novel Hybrid Multi-Objective Population Migration Algorithm

    https://doi.org/10.1142/S0218001415590016Cited by:27 (Source: Crossref)

    This paper presents a multi-objective co-evolutionary population migration algorithm based on Good Point Set (GPSMCPMA) for multi-objective optimization problems (MOP) in view of the characteristics of MOPs. The algorithm introduces the theory of good point set (GPS) and dynamic mutation operator (DMO) and adopts the entire population co-evolutionary migration, based on the concept of Pareto nondomination and global best experience and guidance. The performance of the algorithm is tested through standard multi-objective functions. The experimental results show that the proposed algorithm performs much better in the convergence, diversity and solution distribution than SPEA2, NSGA-II, MOPSO and MOMASEA. It is a fast and robust multi-objective evolutionary algorithm (MOEA) and is applicable to other MOPs.