World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

IMPLEMENTATION OF QUANTUM LOGIC OPERATIONS AND CREATION OF ENTANGLEMENT BETWEEN TWO NUCLEAR SPIN QUBITS WITH CONSTANT INTERACTION

    https://doi.org/10.1142/S0219749906002353Cited by:0 (Source: Crossref)

    We describe how to implement quantum logic operations in a silicon-based quantum computer with phosphorus atoms serving as qubits. The information is stored in the states of nuclear spins and the conditional logic operations are implemented through the electron spins using nuclear–electron hyperfine and electron–electron exchange interactions. The electrons in our computer should stay coherent only during implementation of one Controlled-NOT gate. The exchange interaction is constant, and selective excitations are provided by a magnetic field gradient. The quantum logic operations are implemented by rectangular radio-frequency pulses. This architecture is scalable and does not require manufacturing nanoscale electronic gates. As shown in this paper, parameters of a quantum protocol can be derived analytically even for a computer with a large number of qubits using our perturbation approach. We present the protocol for initialization of the nuclear spins and the protocol for creation of entanglement. All analytical results are tested numerically using a two-qubit system.