Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Active Compounds Isolated from Traditional Chinese Prescription Wen-Pi-Tang Protecting Against Peroxynitrite-Induced LLC-PK1 Cell Damage

    Wen-Pi-Tang, a traditional Chinese prescription, has been widely used for the treatment of patients with moderate chronic renal failure in China. Although the protective effect of Wen-Pi-Tang on peroxynitrite (ONOO-)-induced renal tubular epithelial LLC-PK1 cell damage was elucidated in our previous research, the active components of Wen-Pi-Tang have not yet been fully clarified. Therefore in the present study, we investigated the active components by using a cellular ONOO-generation system. As a result, p-coumaric acid, 4-(4'-hydroxylphenyl)-2-butanone 4'-O-glucopyranoside, gallic acid 3-O-(6'-O-galloyl)-β-d-glucopyranoside, procyanidin B-1, procyanidin B-3, and (+)-catechin were isolated as active compounds inhibiting cellular ONOO- formation and cytotoxicity. In particular, the content of (+)-catechin was significantly higher than those of the other compounds, and the (+)-catechin structure was located in procyanidins B-1 and B-3. Therefore, the major bioactivity of Wen-Pi-Tang against ONOO--induced cytotoxicity in LLC-PK1 cells was thought to be mediated by (+)-catechin. Although we cannot disregard the synergetic effect of various components in Wen-Pi-Tang, (+)-catechin is a major active compound protecting against ONOO--induced LLC-PK1 cell damage and may be used as an index to qualify the ONOO--inhibitory activity of Wen-Pi-Tang extract.

  • articleNo Access

    (+)-Catechin Attenuates NF-κB Activation Through Regulation of Akt, MAPK, and AMPK Signaling Pathways in LPS-Induced BV-2 Microglial Cells

    (+)-catechin is a flavanol that possesses various health and medicinal values, which include neuroprotection, anti-oxidation, antitumor and antihepatitis activities. This study investigated the modulatory effects of (+)-catechin on the lipopolysaccharides (LPS)-stimulated BV-2 cells. (+)-catechin attenuated LPS-induced inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and inhibited microglial NO and ROS production. Additionally, (+)-catechin suppressed the production of tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, while augmenting IL-4. (+)-catechin attenuated LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation via the inhibition of IκB-α phosphorylation. Moreover, (+)-catechin blocked the activation of Akt and its inhibition was shown to play a crucial role in LPS-induced inflammation in BV-2 microglial cells. (+)-catechin also attenuated the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK1/2), and p-38 mitogen activated protein kinases (p38 MAPK) and specific inhibitors of ERK1/2 (UO126) and p38 MAPK (SB202190) subsequently down-regulated the expression of the proinflammatory mediators iNOS and COX-2. Further mechanistic study revealed that (+)-catechin acted through the amelioration of the LPS-induced suppression of adenosine monophosphate-activated protein kinase (AMPK) activity. Taken together, our data indicate that (+)-catechin exhibits anti-inflammatory effects in BV-2 cells by suppressing the production of proinflammatory mediators and mitigation of NF-κB through Akt, ERK, p38 MAPK, and AMPK pathways.