Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Let R be a ring with center Z(R) and n be a fixed positive integer. A mapping f : R → R is said to be n-centralizing on a subset S of R if f(x)xn – xn f(x) ∈ Z(R) holds for all x ∈ S. The main result of this paper states that every n-centralizing generalized derivation F on a (n + 1)!-torsion free semiprime ring is n-commuting. Further, we prove that if a generalized derivation F : R → R is n-centralizing on a nonzero left ideal λ, then either R contains a nonzero central ideal or λD(Z) ⊆ Z(R) for some derivation D of R. As an application, n-centralizing generalized derivations of C*-algebras are characterized.
Let R be a ring and S a nonempty subset of R. A mapping f: R → R is called commuting on S if [f(x),x] = 0 for all x ∈ S. In this paper, firstly, we generalize the well-known result of Posner related to commuting derivations on prime rings. Secondly, we show that if R is a semiprime ring and I is a nonzero ideal of R, then a derivation d of R is commuting on I if one of the following conditions holds: (i) For all x, y ∈ I, either d([x,y]) = [x,y] or d([x,y]) = -[x,y]. (ii) For all x, y ∈ I, either d(x ◦ y) = x ◦ y or d(x ◦ y) = -(x ◦ y). (iii) R is 2-torsion free, and for all x, y ∈ I, either [d(x),d(y)] = d([x,y]) or [d(x),d(y)] = d([y,x]). Furthermore, if d(I) ≠ {0}, then R has a nonzero central ideal. Finally, we introduce the notation of generalized biderivation and prove that every generalized biderivation on a noncommutative prime ring is a biderivation.