Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This paper gives some sufficient conditions for determining the simplicity of infinite dimensional Novikov algebras of characteristic 0, and also constructs a class simple Novikov algebras by extending the base field. At last, the deformation theory of Novikov algebras is introduced.
In the wake of a preceding article [31] introducing the Schrödinger–Virasoro group, we study its affine action on a space of (1+1)-dimensional Schrödinger operators with time- and space-dependent potential V periodic in time. We focus on the subspace corresponding to potentials that are at most quadratic in the space coordinate, which is in some sense the natural quantization of the space of Hill (Sturm–Liouville) operators on the one-dimensional torus. The orbits in this subspace have finite codimension, and their classification by studying the stabilizers can be obtained by extending Kirillov's results on the orbits of the space of Hill operators under the Virasoro group. We then explain the connection to the theory of Ermakov–Lewis invariants for time-dependent harmonic oscillators. These exact adiabatic invariants behave covariantly under the action of the Schrödinger–Virasoro group, which allows a natural classification of the orbits in terms of a monodromy operator on L2(ℝ) which is closely related to the monodromy matrix for the corresponding Hill operator.