Please login to be able to save your searches and receive alerts for new content matching your search criteria.
We give the full list of types of static (homogeneous) solutions within a wide family of exactly solvable 2D dilaton gravities with backreaction of conformal fields. It includes previously known solutions as particular cases. Several concrete examples are considered for illustration. They contain a black hole and cosmological horizon in thermal equilibrium, extremal and ultraextremal horizons, etc. In particular, we demonstrate that AdS and dS geometries can be exact solutions of semiclassical field equations for a nonconstant dilaton field.
A brief review on virtual black holes is presented, with special emphasis on phenomenologically relevant issues like their influence on scattering or on the specific heat of (real) black holes. Regarding theoretical topics, the results important for (the avoidance of) information loss are summarized.
After recalling Hawking's Euclidean notion of virtual black holes and a Minkowskian notion which emerged in studies of 2D models, the importance of virtual black holes for scattering experiments is addressed. Among the key features is that virtual black holes tend to regularize divergences of quantum field theory and that a unitary S-matrix may be constructed. Also, the thermodynamical behavior of real evaporating black holes may be ameliorated by interactions with virtual black holes. Open experimental and theoretical challenges are mentioned briefly.
Frequently, it is argued that the microstates responsible for the Bekenstein–Hawking entropy should arise from some physical degrees of freedom located near or on the black hole horizon. In this essay, we elucidate that instead entropy may emerge from the conversion of physical degrees of freedom, attached to a generic boundary, into unobservable gauge degrees of freedom attached to the horizon. By constructing the reduced phase space, it can be demonstrated that such a transmutation indeed takes place for a large class of black holes, including Schwarzschild.