Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Design and Implementation of Attitude and Heading Reference System with Extended Kalman Filter Based on MEMS Multi-Sensor Fusion

    The accuracy of attitude and heading measurement, as well as the system real-time performance are basic indicators used to evaluate an attitude and heading reference system (AHRS). In order to improve the attitude and heading measurement accuracy under dynamic complex environment, the AHRS system should also have numerical stability and calculation robustness. The AHRS system based on MEMS multi-sensor fusion can realize fusion processing of data measured by multiple sensors, so as to calculate and obtain the optimal carrier attitude and heading information, conduct real-time output, and improve the accuracy and reliability of attitude and heading measurement. For the AHRS system consisting of MEMS gyroscope, accelerometer and triaxial magnetometer, attitude and heading detection principle and algorithm based on MEMS multi-sensor fusion were proposed in this study: The information of the system itself was firstly used to discriminate motion state of the carrier within the filtering cycle, and then Kalman filtering was conducted using different measured information according to motion state to correct the attitude error angle caused by gyroscopic drift. On this basis, an attitude fusion algorithm based on extended Kalman filtering technology was designed for time update process of Kalman filtering, output information of accelerometer was taken as observed quantity under certain conditions to realize measurement updating process of Kalman filtering, and then attitude angle was calculated. In an optical fiber attitude and heading system project in practical engineering, a vehicle field test analysis was carried out simultaneously with the system using ordinary attitude algorithm, and the results showed that the extended Kalman filtering algorithm designed according to the simulation results could realize multi-sensor information fusion, improve measurement accuracy and realize accurate attitude positioning, so as to provide simpler and more flexible criteria for carrier motion status. The results have verified the accuracy and reliability of the algorithm, so it is feasible in practical engineering.

  • articleNo Access

    Distributed Filtering-Based Autonomous Navigation System of UAV

    Unmanned Systems01 Jan 2015

    In this paper, we propose a systematic framework for the autonomous navigation system based on distributed filtering for an Unmanned Aerial Vehicle (UAV). The proposed framework consists of the design and algorithm of the autonomous navigation. Therein, the camera mounted on the UAV functions as a navigation sensor targeted for navigation and positioning. In order to reduce the computational complexity and exclude the risk caused by Global Positioning System (GPS) outage, an autonomous navigation system based on distributed filtering is designed and realized. When GPS is available by monitoring the GPS integrity, sensor information from Strapdown Inertial Navigation System (SINS) and GPS is fused using a 7-state Conventional Kalman Filter (CKF) to estimate the full UAV state (position, velocity and attitude); when GPS is unavailable, sensor information from gyroscopes, accelerometers and magnetometer is fused using a 4-state Extended Kalman Filter (EKF) to estimate the attitude and heading of the UAV, and sensor information from SINS and vision positioning system is fused using a 7-state Incoordinate Interval Kalman Filter (IIKF) to estimate the position and velocity of the UAV. In addition, the second-order vertical channel damping loop is adopted to fuse measurements from a barometer with those of SINS, which suppresses the divergence of the vertical channel error and makes the altitude information calculated by SINS trustable. Both ground and flight experiments of the autonomous navigation system have been carried out. The test results show that the system can provide stabilized attitude information in long durations, and can realize the automatic flight control of UAV.