Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In this paper, we extend the AKSZ formulation of the Poisson sigma model to more general target spaces, and we develop the general theory of graded geometry for poly-symplectic and poly-Poisson structures. In particular, we prove a Schwarz-type theorem and transgression for graded poly-symplectic structures, recovering the action functional and the poly-symplectic structure of the reduced phase space of the poly-Poisson sigma model, from the AKSZ construction.
Chern–Weil theory provides for each invariant polynomial on a Lie algebra 𝔤 a map from 𝔤-connections to differential cocycles whose volume holonomy is the corresponding Chern–Simons theory action functional. Kotov and Strobl have observed that this naturally generalizes from Lie algebras to dg-manifolds and to dg-bundles and that the Chern–Simons action functional associated this way to an n-symplectic manifold is the action functional of the AKSZ σ-model whose target space is the given n-symplectic manifold (examples of this are the Poisson σ-model or the Courant σ-model, including ordinary Chern–Simons theory, or higher-dimensional Abelian Chern–Simons theory). Here we show how, within the framework of the higher Chern–Weil theory in smooth ∞-groupoids, this result can be naturally recovered and enhanced to a morphism of higher stacks, the same way as ordinary Chern–Simons theory is enhanced to a morphism from the stack of principal G-bundles with connections to the 3-stack of line 3-bundles with connections.