Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The method of characteristics is a key tool for studying consistency of equations of motion; it allows issues such as predictability, maximal propagation speed, superluminality, unitarity and acausality to be addressed without requiring explicit solutions. We review this method and its application to massive gravity (mGR) theories to show the limitations of these models' physical viability: Among their problems are loss of unique evolution, superluminal signals, matter coupling inconsistencies and micro-acausality (propagation of signals around local closed time-like curves (CTCs)/closed causal curves (CCCs)). We extend previous no-go results to the entire three-parameter range of mGR theories. It is also argued that bimetric models suffer a similar fate.
Recent tremendous development of quantum information theory has led to a number of quantum technological projects, e.g. quantum random generators. This development had stimulated a new wave of interest in quantum foundations. One of the most intriguing problems of quantum foundations is the elaboration of a consistent and commonly accepted interpretation of a quantum state. Closely related problem is the clarification of the notion of quantum randomness and its interrelation with classical randomness. In this short review, we shall discuss basics of classical theory of randomness (which by itself is very complex and characterized by diversity of approaches) and compare it with irreducible quantum randomness. We also discuss briefly “digital philosophy”, its role in physics (classical and quantum) and its coupling to the information interpretation of quantum mechanics (QM).