Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Pure and Eu-doped (1.0, 3.0, 5.0wt.%) α-Fe2O3 (PFO and EFO) nanotubes and nanowires have been successfully synthesized through the combination of electrospinning and calcination techniques. The structures, morphologies and chemical compositions of the as-obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric and differential scanning calorimetry (TG-DSC) and energy dispersive spectrum (EDS), respectively. To demonstrate the superior gas sensing performance of the doped nanotubes, a contrastive gas sensing study between PFO (EFO) nanotubes and nanowires was performed. It turned out that Eu doping could magnify the impact of morphology on gas sensitivity. Specifically, at the optimum operating temperature of 240∘C, the response value of PFO nanotubes to 100ppm acetone is slightly higher than that of nanowires (3.59/2.20). EFO (3.0wt.%) nanotubes have a response of 84.05, which is almost 2.7 times as high as that of nanowires (31.54). Moreover, they possess more rapid response/recovery time (11s and 36s, respectively) than nanowires (17s and 40s, respectively). The lowest detection limit for acetone is 0.1ppm and its response is 2.15. In addition, both of EFO nanotubes and nanowires sensors have a good linearity (0.1–500ppm) and favorable selectivity in acetone detection.
This paper presents comparative analysis of different wavelength ranges for the spectroscopic detection of acetone vapor. We collected and analyzed original absorption line spectra arising from electronic transitions in the ultraviolet, near-infrared vibrational overtones, mid-infrared fundamentals, THz torsional modes, and mm-wave rotational transitions. Peak absorption cross sections of prominent spectral features are determined. The relative merit of each spectral range for sensing is considered, taking into account the absorption strength, available technology, and possible interferences.
In this paper, first we investigate the heating-responsive shape memory effect in an acrylonitrile butadiene styrene (ABS). Subsequently, after surface treatment (via dipping in acetone/water solution of different concentrations and for different dipping time) of pre-stretched samples, we demonstrate the feasibility to form strip shaped wrinkles atop the surface upon heating of pre-stretched ABS for shape recovery. The influential factors, such as acetone concentration and dipping time in surface treatment, are revealed and discussed.
Experimental studies of the Raman scattering of the band of C = O vibrations of acetone (1710 cm–1) showed that the parallel and perpendicular polarized components have a large half-width (respectively, 11.6 and 18 cm–1) and also the bands' maxima of these components are shifted by ~5 cm–1. In the neutral solvent (heptane), the difference of the maxima position of the bands decreases. Calculations showed that the molecules of acetone can aggregate to form a dimer with the energy gain of 10.1 kJ/mole. In the dimer several hydrogen bonds are formed between the oxygen atom of one molecule and the hydrogen atoms of CH3-group of another molecule. In an aqueous mixture of acetone, according to calculations, there is a possibility for formation of dimers and closed trimer aggregates with the energy gain, respectively, 19.1 and 45.8 kJ/mole. Calculation showed that symmetric and antisymmetric O–H vibrations of water are displaced in the interaction with acetone to lower frequencies, respectively, to 3808.4 and to 3931.8 –1.
Aniline is oxidized to nitrosobenzene as the initial product, which undergoes further oxidation to nitrobenzene. The nitrosobenzene formation is catalyzed by functionalized multiwalled carbon nanotubes (CNT) followed by a coupling reaction between nitrosobenzene and aniline to produce azobenzene. This coupling requires close proximity of the reactants. It proceeds rapidly resulting in the UV-VIS absorption spectrum showing maxima at 327 nm and 425 nm. The nitrosobenzene yield in the presence of CNTs is controlled by the amount present in the medium. As the reaction is not catalyzed by unfunctionalized CNTs or graphitic particles, the uniqueness of the functionalized multiwalled CNTs in this catalysis suggests a nanodimensional reaction pathway.