Please login to be able to save your searches and receive alerts for new content matching your search criteria.
The continuous increment in the performance of classical computers has been driven to its limit. New ways are studied to avoid this oncoming bottleneck and many answers can be found. An example is the Belousov–Zhabotinsky (BZ) reaction which includes some fundamental and essential characteristics that attract chemists, biologists, and computer scientists. Interaction of excitation wave-fronts in BZ system, can be interpreted in terms of logical gates and applied in the design of unconventional hardware components. Logic gates and other more complicated components have been already proposed using different topologies and particular characteristics. In this study, the inherent parallelism and simplicity of Cellular Automata (CAs) modeling is combined with an Oregonator model of light-sensitive version of BZ reaction. The resulting parallel and computationally-inexpensive model has the ability to simulate a topology that can be considered as a one-bit full adder digital component towards the design of an Arithmetic Logic Unit (ALU).
Power consumption and especially leakage power are the main concerns of nano MOSFET technology. On the other hand, binary circuits face a huge number of interconnection wires, which results in power dissipation and area. Researchers introduced emerging nanodevices and multiple-valued logic (MVL) as two feasible solutions to overcome the challenges mentioned above. Carbon nanotube field-effect transistor (CNFET) is one of the emerging technologies that has some unique properties and advantages over MOSFET, such as adjusting the carbon nanotube (CNT) diameters to have the desired threshold voltage and have the same mobility as P-FET and N-FET transistors. In this paper, we present a novel method for designing ternary logic circuits based on CNFETs. Each of our designed logic circuits implements a logic function and its complementary via a control signal. Also, these circuits have a high impedance state, which saves power while the circuits are not in use. Moreover, we designed a two-digit adder/ subtractor and a power-efficient ternary logic arithmetic logic unit (ALU) based on the proposed gates. The proposed ternary circuits are simulated using HSPICE via standard 32 nm CNFET technology. The simulation results indicate the designs’ correct operation under different process, voltage, and temperature (PVT) variations. Also, simulation results show that the two-digit adder/ subtractor using our proposed gates has 12X and 5X lower power consumption and power-delay product (PDP), respectively, compared to previous designs.
We propose schemes for binary adder, subtractor and parity checker using optical logic gates. These schemes could be useful for calculations using optical systems. Utilizing optical logic gates, we can achieve functions of binary adder, subtractor and parity checker of high-speed optical signals. Due to two-photon absorption in the wetting layer, quantum dot-semiconductor optical amplifier Mach-Zehnder interferometer (QD-SOA-MZI) can work as high data rate optical logic gates. The simulated result supports the idea that it is possible to realize all-optical binary adder, subtractor and parity checker at high optical signal rates.