Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In order to analyze the adsorption capacities of different solid substrates, we present a multi-step method to separately study the isotherm at different pressure ranges (steps). The method is based on simple gas isotherm measurements (nitrogen, methane, carbon dioxide, argon, and oxygen) and is tested to describe the adsorption process and characterize a graphitized surface (GCB) and two different granular activated carbons (GAC). The GCB isotherms are described as a sum of Fowler-Guggenheim-Langmuir shifted curves; isotherm behaviors are quite similar at different temperatures, but change below a certain threshold. In GAC the first steps show the same adsorption characteristics at low pressures (Dubinin's description), but this behavior changes at higher pressure regimes, which allows one to elucidate how heterogeneous the surfaces are or how strong the interactions between adsorbed molecules are for this marginal adsorption to occur. We tested different approaches (from BET multilayer to Aranovich) and found quite different features. We finally conclude that if the description of the adsorption on complex substrates, such as those presented here, is carried using only one model, e. g. Dubinin in case of GACs, the resulting characteristics of the adsorbent would be very biased.
The effect of wet acid oxidation by means of sulfuric/nitric acid mixtures, and high-temperature treatment of commercial arc-discharge synthesized multi-walled carbon nanotubes (MWCNTs) was studied. In order to analyze the adsorption capacities of differently treated MWCNTs, we employed a multistep method that considers separately different pressure ranges (zones) on the experimentally obtained isotherms. The method is based on simple gas isotherm measurements (N2, CO2, CH4, etc.). Low pressure ranges can be described using Dubinin’s model, while high pressure regimes can be fitted using different models such as BET multilayer and Freundlich equations. This analysis allows to elucidate how different substrate treatments (chemical and thermal) can affect the adsorbate–adsorbent interactions; moreover, theoretical description of adsorbate–adsorbate interactions can be improved if a combination of adsorption mechanisms are used instead of a unique model. The results hereby presented also show that, while MWCNTs are a promising material for storage applications, gas separation applications should carefully consider the effect of wide nanotube size distribution present on samples after activation procedures.