Please login to be able to save your searches and receive alerts for new content matching your search criteria.
A significant improvement of contact transfer resistance on undoped GaN/AlGaN/AlN (10 Å)/GaN high electron mobility transistor (HEMT) structure was demonstrated using a Ta/Ti/Al/Mo/Au metallization scheme compared to a Ti/Al/Mo/Au metallization scheme. A contact resistance as low as 0.16 ± 0.03 ohm-mm was achieved by rapid thermal annealing of evaporated Ta (125 Å)/Ti (150 Å)/Al (900 Å)/Mo(400 Å)/Au(500 Å) metal contact at 700 °C for 1 min followed by 800 °C for 30 sec in a N2 ambient. An excellent edge acuity was also demonstrated for the annealed Ta/Ti/Al/Mo/Au ohmic contacts.
Hot-electron fluctuation techniques were developed for experimental investigation of picosecond and subpicosecond electronic and phononic processes in voltage-biased 2DEG channels of interest for microwave low-noise and high-power transistors. Examples illustrate real-space transfer, hot-electron energy relaxation, and occupancy relaxation of hot-phonon modes. The pioneering results on hot-electron energy relaxation and hot-phonon lifetime are confirmed by time-resolved response experiments. The fluctuation technique for measuring the hot-phonon lifetime as a function of the hot-phonon temperature is unique, no datum has been reported for comparison as yet.
AlGaN/GaN heterojunction field effect transistors (HFETs) on sapphire substrates for power-switching applications have been fabricated. Design parameters such as source-gate spacing (Lsg), gate length (Lg), and gate width (Wg) have been varied to check their effects on the device performances. For a gate-drain spacing (Lgd) of 10µm, a specific on-resistance (ARon) of 1.35mΩ-cm2 and off-state breakdown voltage (BV) of 770V was achieved, which is close to the 4-HSiC theoretical limit.
We review our state-of-the-art GaN-based device technologies for power switching at low frequencies and for future millimeter-wave communication systems. These two applications are emerging in addition to the power amplifiers at microwave frequencies which have been already commercialized for cellular base stations. Technical issues of the power switching GaN device include lowering the fabrication cost, normally-off operation and further increase of the breakdown voltages extracting full potential of GaN-based materials. We establish flat and crack-free epitaxial growth of GaN on Si which can reduce the chip cost. Our novel device structure called Gate Injection Transistor (GIT) achieves normally-off operation with high enough drain current utilizing conductivity modulation. Here we also present the world highest breakdown voltage of 10400V in AlGaN/GaN HFETs. In this paper, we also present high frequency GaN-based devices for millimeter-wave applications. Short-gate MIS-HFETs using in-situ SiN as gate insulators achieve high fmax up to 203GHz. Successful integration of low-loss microstrip lines with via-holes onto sapphire enables compact 3-stage K-band amplifier MMIC of which the small-signal gain is as high as 22dB at 26GHz. The presented devices are promising for the two future emerging applications demonstrating high enough potential of GaN-based transistors.
This paper presents technology computer-aided design (TCAD) modeling of an enhancement-mode aluminum gallium nitride (AlGaN)/gallium nitride (GaN) high electron mobility transistor (HEMT) with extensive π-gate optimization for high-power and radio frequency (RF) applications. Effects of the gate voltages on threshold (Vth), transconductance (gm), breakdown voltage (VBR), cutoff frequency (fT), maximum frequency of oscillation (fmax) and minimum noise figure (NFmin) are systematically investigated with different gate structures (π–Shaped p-GaN MISHEMT, π–Shaped p-GaN HEMT, π–Gate HEMT). A comparative study demonstrates that π–Gate with additional p-GaN and insulating layer makes the device effectively operate in the enhancement mode having a threshold voltage (Vth) = 1.72 V with a breakdown voltage (VBR) = 341 V, exhibiting better gate control with maximum transconductance (gm,max) of 0.321 S/mm. In addition, the proposed device architecture with an optimized gate structure maintains a balance between a positive device threshold and a high breakdown voltage and achieves a better noise immunity with the minimum noise figure of 0.64 dB while operating at 10 GHz with a cutoff frequency (fT) of 33.4 GHz, and a maximum stable operating frequency (fmax) of 82.3 GHz. Moreover, the device achieved an outstanding Vth, gm,max, VBR, fT, fmax and NFmin making it suitable for high-power, high-speed electronics, and low-noise amplifiers.
The grating-gate plasmonic crystal system represents a compelling arena for investigating strong light-matter interactions and diverse plasmon resonances. This study reviews the recent discovery of two distinctive terahertz phases of AlGaN/GaN plasmonic crystals that arise from varying the modulation of a two-dimensional electron density beneath the metallic gratings: the delocalized phase at weak modulation and the localized phase at strong modulation. Notably, we delve into an impact of the grating filling factor on the electrically driven transition between these phases. Our findings underscore the critical role of specific metal grating geometry parameters in facilitating this transition. Moreover, we explore the potential of utilizing graphene-based gratings as alternatives to metallic gratings. Through the integration of graphene, grown by Chemical Vapor Deposition method on copper foil and then transferred to the high electron mobility AlGaN/GaN heterostructures, we achieve an effective modulation of broadband absorption by free charge carriers within the 0.5–6 THz range via electrical biasing of the graphene electrode. However, while this approach successfully modulates absorption in a wide THz range, it does not elicit plasmon resonances within the graphene-based grating-gate plasmonic crystals. This intriguing observation poses a significant unresolved question warranting further theoretical and experimental exploration in subsequent studies.
In the present study, AlGaN/GaN high-electron-mobility transistors (HEMTs) were fabricated through metal–organic chemical vapor deposition. Gate recess etching, combined with inductively coupled plasma reactive ion etching, was adopted, and etching time was controlled to manipulate the threshold voltage (Vth). The DC characteristics of devices etched for 0–25 s were investigated. Vth exhibited a 1.9-V positive shift in the device with the AlGaN layer etched for 25 s. The effect of an AlN buffer layer on the Vth shift was also investigated. The Vth of the HEMT etched for 25 s and without an AlN buffer layer exhibited a positive shift of 3.1 V.
The dependence of the 1/f noise on 2D electron concentration in the channel nCh of AlGaN/GaN Heterostructure Field Effect Transistors and Metal Oxide Semiconductor Heterostructure Field Effect Transistors has been studied and compared. The dependencies of Hooge parameter αCh for the noise sources located in the channel of the transistors on sheet electron concentration are found identical for both types of devices. The increase of the Hooge parameter αCh with the decrease of the channel concentration observed in both types of devices confirms that the noise sources are located in the region under the gate in the AlGaN/GaN heterostructure and that electron tunneling from the 2D electron gas into the traps in GaN or AlGaN layers is a probable noise mechanism.
The dependence of the 1/f noise on 2D electron concentration in the channel nCh of AlGaN/GaN Heterostructure Field Effect Transistors and Metal Oxide Semiconductor Heterostructure Field Effect Transistors has been studied and compared. The dependencies of Hooge parameter αCh for the noise sources located in the channel of the transistors on sheet electron concentration are found identical for both types of devices. The increase of the Hooge parameter αCh with the decrease of the channel concentration observed in both types of devices confirms that the noise sources are located in the region under the gate in the AlGaN/GaN heterostructure and that electron tunneling from the 2D electron gas into the traps in GaN or AlGaN layers is a probable noise mechanism.