Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleOpen Access

    Understanding the index theorems with massive fermions

    The index theorems relate the gauge field and metric on a manifold to the solution of the Dirac equation on it. In the standard approach, the Dirac operator must be massless to make the chirality operator well defined. In physics, however, the index theorem appears as a consequence of chiral anomaly, which is an explicit breaking of the symmetry. It is then natural to ask if we can understand the index theorems in a massive fermion system which does not have chiral symmetry. In this review, we discuss how to reformulate the chiral anomaly and index theorems with massive Dirac operators, where we find nontrivial mathematical relations between massless and massive fermions. A special focus is placed on the Atiyah–Patodi–Singer index, whose original formulation requires a physicist-unfriendly boundary condition, while the corresponding massive domain-wall fermion reformulation does not. The massive formulation provides a natural understanding of the anomaly inflow between the bulk and edge in particle and condensed matter physics.

  • articleOpen Access

    An Eigenvalue Approach to Detect Flows and Events in Crowd Videos

    Analysis of flows in crowd videos is a remarkable topic with practical implementations in many different areas. In this paper, we present a wide overview of this topic along with our own approach to this problem. Our approach treats the difficulty of crowd flow analysis by distinguishing single versus multiple flows in a scene. Spatiotemporal features of two consecutive frames are extracted by optical flows to create a three-dimensional tensor, which retains appearance and velocity information. Tensor’s upper left minor matrix captures intensity structure. A normalized continuous rank-increase measure for each frame is calculated by a generalized interlacing property of the eigenvalues of these matrices. In essence, measure values put through the knowledge of existing flows. Yet they do not go into effect desirably due to optical flow estimation error and some other factors. A proper set of the degree of polynomial fitting functions decodes their existence. But how can we estimate that set? Its detailed study is performed. Zero flow, single flow, multiple flows, and interesting events are detected as frame basis using thresholds on the polynomial fitting measure values. Plausible mean outputs of recall rate (88.9%), precision rate (86.7%), area under the receiver operating characteristic curve (98.9%), and accuracy (92.9%) reported from conducted experiments on PETS2009 and UMN benchmark datasets make clear and visible that our method gains high-quality results to detect flows and events in crowd videos in terms of both robustness and potency.

  • articleOpen Access

    ISSUES OF EFFECTIVE FIELD THEORIES WITH RESONANCES

    We address some issues of renormalization and symmetries of effective field theories with unstable particles - resonances. We also calculate anomalous contributions in the divergence of the singlet axial current in an effective field theory of massive SU(N) Yang-Mills fields interacting with fermions and discuss their possible relevance to the strong CP problem.

  • chapterOpen Access

    Pair production, vacuum polarization and anomaly in (A)dS and charged black holes

    We explore the connection between the distribution of particles spontaneously produced from an electric field or black hole and the vacuum persistence, twice the imaginary part of the one-loop effective action. Employing the reconstruction conjecture, we find the effective action for the Bose-Einstein or Fermi-Dirac distribution. The Schwinger effect in AdS2 is computed via the phase-integral method in the static coordinates. The Hawking radiation and Schwinger effect of a charged black hole is rederived and interpreted via the phase-integral. Finally, we discuss the relation between the vacuum persistence and the trace or gravitational anomalies.