Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Centralized matching programs have been established in several countries to organize kidney exchanges between incompatible patient-donor pairs. At the heart of these programs are algorithms to solve kidney exchange problems, which can be modelled as cycle packing problems in a directed graph, involving cycles of length 2, 3, or even longer. Usually, the goal is to maximize the number of transplants, but sometimes the total benefit is maximized by considering the differences between suitable kidneys. These problems correspond to computing cycle packings of maximum size or maximum weight in directed graphs. Here we prove the APX-completeness of the problem of finding a maximum size exchange involving only 2-cycles and 3-cycles. We also present an approximation algorithm and an exact algorithm for the problem of finding a maximum weight exchange involving cycles of bounded length. The exact algorithm has been used to provide optimal solutions to real kidney exchange problems arising from the National Matching Scheme for Paired Donation run by NHS Blood and Transplant, and we describe practical experience based on this collaboration.
A subset L ⊆ V of a graph G = (V, E) is called a connected liar's dominating set of G if (i) for all v ∈ V, |NG[v] ∩ L| ≥ 2, (ii) for every pair u, v ∈ V of distinct vertices, |(NG[u]∪NG[v])∩L| ≥ 3, and (iii) the induced subgraph of G on L is connected. In this paper, we initiate the algorithmic study of minimum connected liar's domination problem by showing that the corresponding decision version of the problem is NP-complete for general graph. Next we study this problem in subclasses of chordal graphs where we strengthen the NP-completeness of this problem for undirected path graph and prove that this problem is linearly solvable for block graphs. Finally, we propose an approximation algorithm for minimum connected liar's domination problem and investigate its hardness of approximation in general graphs.