Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This paper presents a simple numerical scheme for estimating the attraction region of a fixed point in one-dimensional discrete-time chaotic systems controlled by the delayed-feedback method. This scheme employs the well-known linear matrix inequality approach. A systematic procedure for estimating the region is provided, and numerical examples are used to validate the results.
We extend Kim's complex exponential function and come up with a theory about Julia sets of Newton method for general exponential equation. We analyze the behavior of the roots of some complex exponential equation, and prove the Julia Set's symmetry, boundedness and embedding topology distribution structure of attraction regions in theory.