Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    A Note on the b-Chromatic Number of Corona of Graphs

    A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by φ(G), is the maximal integer k such that G has a b-coloring with k colors. In this paper, the b-chromatic numbers of the coronas of cycles, star graphs and wheel graphs with different numbers of vertices, respectively, are obtained. Also the bounds for the b-chromatic number of corona of any two graphs is discussed.

  • articleNo Access

    On the b-Chromatic Sum of Mycielskian of Km, n, Kn and Cn

    A b-coloring of a graph G is a proper coloring of the vertices of G such that there exists a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by φ(G), is the largest integer k such that G has a b-coloring with k colors. The b-chromatic sum of a graph G(V, E), denoted by φ′(G) is defined as the minimum of sum of colors c(v) of v for all vV in a b-coloring of G using φ(G) colors. The Mycielskian or Mycielski, μ(H) of a graph H with vertex set {v1, v2,…, vn} is a graph G obtained from H by adding a set of n + 1 new vertices {u, u1, u2, …, un} joining u to each vertex ui(1 ≤ in) and joining ui to each neighbour of vi in H. In this paper, the b-chromatic sum of Mycielskian of cycles, complete graphs and complete bipartite graphs are discussed. Also, an application of b-coloring in image processing is discussed here.

  • articleNo Access

    b-Chromatic Sum and b-Continuity Property of Some Graphs

    A b-coloring of a graph G is a proper coloring of the vertices of G such that there exist a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph G, denoted by φ(G), is the largest integer k such that G has a b-coloring with k colors. The b-chromatic sum of a graph G(V,E), denoted by φ(G), is introduced and it is defined as the minimum of sum of colors c(v) of v for any vV in a b-coloring of G using φ(G) colors. A graph G is b-continuous, if it admits a b-coloring with t colors, for every t=χ(G),,φ(G). In this paper, the b-continuity property of corona of two cycles, corona of two star graphs and corona of two wheel graphs with unequal number of vertices is discussed. The b-continuity property of corona of any two graphs with same number of vertices is also discussed. Also, the b-continuity property of Mycielskian of complete graph, complete bipartite graph and paths are discussed. The b-chromatic sum of power graph of a path is also obtained.