Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Lead-free piezoelectric (Bi1/2Na1/2)TiO3 (abbreviated as BNT) films were deposited on 0.2 mm thick pure titanium(Ti) substrates by a hydrothermal method. Scratch tests and Vickers indentation tests were performed to quantitatively assess the adhesion strength between BNT films and Ti substrates. Some of Ti substrates were pretreated by chemical polish and mechanical polish respectively prior to BNT film deposition with a view of investigating the effects of substrate surface pretreatments on the adhesion of BNT films. In the scratch test, the critical force was determined from the variations of the tangential force and the acoustic emission (AE) signals with the normal force. The scratch test results revealed that the chemical polish pretreatment effectively improved the adhesion of BNT films. In addition, the critical substrate strain inducing the adhesion failure of BNT films has been investigated by the Vickers indentation test combined with finite element analysis (FEM).
Lead-free piezoelectric (Bi1/2Na1/2)TiO3 (abbreviated as BNT) films were deposited on 1 mm thick pure titanium(Ti) substrates by a hydrothermal method. Tensile tests were performed to quantitatively assess the adhesion strength between BNT films and Ti substrates. Ti substrates were pretreated by chemical polish and mechanical polish respectively prior to BNT film deposition. In the tensile test, the behavior of BNT film exfoliation was investigated by the replica method. The critical Ti substrate strain inducing BNT film exfoliation was determined by the aid of finite element analysis (FEM). In this study, the results revealed that BNT film exfoliations were caused by the strain of Ti substrate, and the mechanical polish pretreatment improved the adhesion of BNT film to Ti substrate.