Based on the first-principles, we simulated the spectral properties of PbWO4 (PWO) crystals with an oxygen vacancy. As density functional theory (DFT) underestimates the band gap, the band edge is modified by Heyd-Scuseria-Ernzerhof (HSE). Moreover, artificial interactions of the charged defect of oxygen vacancies with three different charges have been corrected by finite-size correction scheme (FNV). Finally, the optical properties are obtained containing electron–phonon coupling. The calculated absorption band peaks of the F and F+ centers at 1.7eV and 2.47eV agree well with the experimental value, respectively.