Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    CONTROLLED AGGREGATION OF AZOBENZENE BASED ON DNA-MIMETICS AT THE AIR–WATER INTERFACE

    Monolayers of thymine amphiphile containing azobenzene chromophore (Azo-Thy) were prepared on various aqueous oligonucleotide (dA30, d(GA)15, d(GGA)10) subphases. Pressure–area isotherms and reflection absorption spectra of the monolayers on dA30 or d(GA)15 solution showed that the H-aggregate of the azobenzene units was formed at higher surface pressure than 25 mN/m. In contrast, the monolayer on an aqueous d(GGA)10 solution did not form any aggregates of the azobenzene units even at high surface pressure. Base-pair formation between Azo-Thy and template d(GGA)10 could give free volume to the azobenzene units in the monolayer to prevent the aggregation of the azobenzene units at the air–water interface.

  • articleNo Access

    CIRCULAR ARRANGEMENT OF AZOBENZENE CHROMOPHORES IN THE NUCLEOAMPHIPHILE MONOLAYER BY BASE-PAIRING WITH CYCLIC DNA

    In order to construct chromophores arrays that precisely controlled their arrangement, monolayers of an azobenzene bearing nucleoamphiphile were prepared on various oligoDNA solutions. Monolayers of the amphiphilic adenine derivative bearing an azobenzene moiety (C12AzoC5Ade) were prepared on thymidylic acid tetramer (dT4) and octamer (dT8) solutions, and UV-vis reflection absorption spectra of the monolayers were measured to investigate aggregation structures of the azobenzene. The absorption maximum of the monolayer was blue-shifted on the dT4 solution and red-shifted on the dT8 solution. It shows that azobenzene groups in the monolayer have parallel orientation (H aggregate) on the dT4 solution. Though, azobenzene groups have head-to-tail orientation (J aggregates) on the dT8 solution. When monolayers of C12AzoC5Ade were prepared on the synthesized cyclic oligonucleotides, the absorption spectra were totally different from those of the corresponding linear oligonucleotides.