Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Fully auditory Brain-computer interfaces based on the dichotic listening task (DL-BCIs) are suited for users unable to do any muscular movement, which includes gazing, exploration or coordination of their eyes looking for inputs in form of feedback, stimulation or visual support. However, one of their disadvantages, in contrast with the visual BCIs, is their lower performance that makes them not adequate in applications that require a high accuracy. To overcome this disadvantage, we employed a Bayesian approach in which the DL-BCI was modeled as a Binary phase shift keying receiver for which the accuracy can be estimated a priori as a function of the signal-to-noise ratio. The results showed the measured accuracy to match the predefined target accuracy, thus validating this model that made possible to estimate in advance the classification accuracy on a trial-by-trial basis. This constitutes a novel methodology in the design of fully auditory DL-BCIs that let us first, define the target accuracy for a specific application and second, classify when the signal-to-noise ratio guarantees that target accuracy.
Despite the relatively high accuracy of the naïve Bayes (NB) classifier, there may be several instances where it is not optimal, i.e. does not have the same classification performance as the Bayes classifier utilizing the joint distribution of the examined attributes. However, the Bayes classifier can be computationally intractable due to its required knowledge of the joint distribution. Therefore, we introduce a "pairwise naïve" Bayes (PNB) classifier that incorporates all pairwise relationships among the examined attributes, but does not require specification of the joint distribution. In this paper, we first describe the necessary and sufficient conditions under which the PNB classifier is optimal. We then discuss sufficient conditions for which the PNB classifier, and not NB, is optimal for normal attributes. Through simulation and actual studies, we evaluate the performance of our proposed classifier relative to the Bayes and NB classifiers, along with the HNB, AODE, LBR and TAN classifiers, using normal density and empirical estimation methods. Our applications show that the PNB classifier using normal density estimation yields the highest accuracy for data sets containing continuous attributes. We conclude that it offers a useful compromise between the Bayes and NB classifiers.
This paper proposes a multi-agent data process method based on Rough Set in grid environment. It can effectively process data by Bayesian classification based on attributes reduction in Rough Set and dispatch a collection of agents to coordinate a user job over grid computing. Our method can well resolve the main problems about data process that exist in grid. In this paper, we firstly illuminate the Bayesian classification based on Rough Set. Then we detail multi-agent's framework and scheduling mechanism. We also illuminate the agent's implementation based on Java. Finally we represent the experiment result by comparing our method with the naïve grid.