Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Progress on six dimensional ionization muon cooling with relatively small rings of magnets is described. Lattices being explored include scaling sector cyclotrons with edge focusing and strong focusing, fixed field alternating gradient (FFAG) rings. Ionization cooling is provided by high pressure hydrogen gas which removes both transverse and longitudinal momentum. Lost longitudinal momentum is replaced using radio frequency (RF) cavities, giving a net transverse emittance reduction. The longer path length in the hydrogen of higher momentum muons decreases longitudinal emittance at the expense of transverse emittance. Thus emittance exchange allows these rings to cool in all six dimensions and not just transversely. Alternatively, if the RF is located after the ring, it may be possible to cool the muons by stopping them as they spiral adiabatically into a central swarm. As p → 0, Δp → 0. The resulting cooled muons can lead to an intense muon beam which could be a source for neutrino factories or muon colliders.
We review the basic methods for cooling charged particle beams in storage rings and accelerators. Applications of cooled beams are discussed.
We review the basic methods for cooling charged particle beams in storage rings and accelerators. Applications of cooled beams are discussed.
As of the year 2018 the Facility for Antiproton and Ion Research (FAIR) will offer access to exotic ion beams and beams of antiproton of unprecedented luminosity. The facility currently under construction in Darmstadt, Germany, adjacent to the existing accelerator at the GSI Helmholtz Centre for Heavy-Ion Research, will serve several collaborations and fields simultaneously: atomic, hadron, nuclear, and plasma physics.