Processing math: 100%
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Baicalein Induces Beclin 1- and Extracellular Signal-Regulated Kinase-Dependent Autophagy in Ovarian Cancer Cells

    Baicalein (BA), one of the major compounds isolated from the root of Scutellaria baicalensis Gerogi, exhibits various pharmacological effects, such as anti-oxidant, anti-inflammatory, and anticancer effects. In this study, we found that BA reduced cell viability and increased apoptosis in ovarian cancer cells. Treatment of cells with BA enhanced microtubule-associated protein light chain 3-II (LC3-II) expression, acidic vesicular organelle and GFP-LC3 fluorescence dot accumulation. Combined treatment with chloroquine and BA apparently reduced cell viability and increased the cleavage of poly (ADPribose) polymerase (PARP) in both HEY and A2780 ovarian cancer cell lines, indicating that BA induces a protective autophagy in these cells. Knockdown of Beclin 1 by siRNA remarkably decreased BA-induced LC3-II lipidation. In addition, we found an increase in the phosphorylation of extracellular signal-regulated kinase (ERK, Thr202/Thr204) and AKT (Ser473) after BA treatment, and inhibition of ERK activation by the pharmacological inhibitor U0126 or ERK siRNA blocked BA-induced autophagy. Taken together, these results suggest that BA induces Beclin 1- and ERK-dependent autophagy in ovarian cancer cells.

  • articleNo Access

    INVESTIGATING EXPRESSION OF AUTOPHAGY-ASSOCIATED PROTEINS LEVEL IN RATS WITH ACUTE LUNG INJURY INDUCED BY REMOTE LIMB ISCHEMIA-REPERFUSION

    Objective: To explore the early expression of autophagy-associated proteins in lung tissues in acute lung injury (ALI) induced by remote limb ischemia-reperfusion (LIR) by using rats as our test specimens. Method: A total of 48 adult male Sprague-Dawley (SD) rats with weights in the range of 220–250g were designated as LIR models, and divided randomly into two groups of 24 each: Sham group and ischemia-reperfusion (I/R) group. Then, each group was divided into four subgroups at the end of 0, 2, 4, 8h of reperfusion, after 3h of ischemia. The rats were anesthetized by pentobarbital sodium. The serum lactate dehydrogenases (LDH) were detected with enzyme linked immunosorbent assay (ELISA), and the pathological changes of lung tissues were observed by using immunofluorescence techniques. The expression of Beclin1 protein and Atg5 mRNA in the lung tissues were detected by using reverse transcription polymerase chain reaction (RT-PCR), and analyzed by 2ΔΔCT method; Microtubules associated protein light chain 3 (LC3) in the lung tissues were detected by Western blot test. Result: The levels of serum LDH in I/R groups were much higher than those in Sham groups (P<0.01), which showed that the rats models of LIR were successful. Immunofluorescence examination demonstrated injuries of lung tissues, thickening of alveolar septum and partial consolidation in I/R groups; however, this damage was not observed significantly in Sham groups. The expression of Beclin1 and Atg5 mRNA, LC3-II and the ratio of LC3-II/GAPDH in lung tissues were very much higher at 4 and 8h in IR groups (P<0.01 or P<0.05), and were significantly higher at the same time compared with Sham groups (P<0.01 or P<0.05). Conclusion: LIR causes ALI to induce increased autophagy and high expression of its relevant proteins; while continuous I/R can also cause autophagy inhibition.