Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    TRIANGLES, SQUARES AND GEODESICS

    In the early 1990s Steve Gersten and Hamish Short proved that compact nonpositively curved triangle complexes have biautomatic fundamental groups and that compact nonpositively curved square complexes have biautomatic fundamental groups. In this paper we report on the extent to which results such as these extend to nonpositively curved complexes built out a mixture of triangles and squares. Since both results by Gersten and Short have been generalized to higher dimensions, this can be viewed as a first step towards unifying Januszkiewicz and Świȧtkowski's theory of simplicial nonpositive curvature with the theory of nonpositively curved cube complexes.

  • articleNo Access

    Rewriting systems and biautomatic structures for Chinese, hypoplactic, and sylvester monoids

    This paper studies complete rewriting systems and biautomaticity for three interesting classes of finite-rank homogeneous monoids: Chinese monoids, hypoplactic monoids, and sylvester monoids. For Chinese monoids, we first give new presentations via finite complete rewriting systems, using more lucid constructions and proofs than those given independently by Chen & Qui and Güzel Karpuz; we then construct biautomatic structures. For hypoplactic monoids, we construct finite complete rewriting systems and biautomatic structures. For sylvester monoids, which are not finitely presented, we prove that the standard presentation is an infinite complete rewriting system, and construct biautomatic structures. Consequently, the monoid algebras corresponding to monoids of these classes are automaton algebras in the sense of Ufnarovskij.