Please login to be able to save your searches and receive alerts for new content matching your search criteria.
In the early 1990s Steve Gersten and Hamish Short proved that compact nonpositively curved triangle complexes have biautomatic fundamental groups and that compact nonpositively curved square complexes have biautomatic fundamental groups. In this paper we report on the extent to which results such as these extend to nonpositively curved complexes built out a mixture of triangles and squares. Since both results by Gersten and Short have been generalized to higher dimensions, this can be viewed as a first step towards unifying Januszkiewicz and Świȧtkowski's theory of simplicial nonpositive curvature with the theory of nonpositively curved cube complexes.
This paper studies complete rewriting systems and biautomaticity for three interesting classes of finite-rank homogeneous monoids: Chinese monoids, hypoplactic monoids, and sylvester monoids. For Chinese monoids, we first give new presentations via finite complete rewriting systems, using more lucid constructions and proofs than those given independently by Chen & Qui and Güzel Karpuz; we then construct biautomatic structures. For hypoplactic monoids, we construct finite complete rewriting systems and biautomatic structures. For sylvester monoids, which are not finitely presented, we prove that the standard presentation is an infinite complete rewriting system, and construct biautomatic structures. Consequently, the monoid algebras corresponding to monoids of these classes are automaton algebras in the sense of Ufnarovskij.