Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Software Defect Prediction Based on Cost-Sensitive Dictionary Learning

    Software defect prediction technology has been widely used in improving the quality of software system. Most real software defect datasets tend to have fewer defective modules than defective-free modules. Highly class-imbalanced data typically make accurate predictions difficult. The imbalanced nature of software defect datasets makes the prediction model classifying a defective module as a defective-free one easily. As there exists the similarity during the different software modules, one module can be represented by the sparse representation coefficients over the pre-defined dictionary which consists of historical software defect datasets. In this study, we make use of dictionary learning method to predict software defect. We optimize the classifier parameters and the dictionary atoms iteratively, to ensure that the extracted features (sparse representation) are optimal for the trained classifier. We prove the optimal condition of the elastic net which is used to solve the sparse coding coefficients and the regularity of the elastic net solution. Due to the reason that the misclassification of defective modules generally incurs much higher cost risk than the misclassification of defective-free ones, we take the different misclassification costs into account, increasing the punishment on misclassification defective modules in the procedure of dictionary learning, making the classification inclining to classify a module as a defective one. Thus, we propose a cost-sensitive software defect prediction method using dictionary learning (CSDL). Experimental results on the 10 class-imbalance datasets of NASA show that our method is more effective than several typical state-of-the-art defect prediction methods.

  • articleNo Access

    A duality and free boundary approach to adverse selection

    Adverse selection is a version of the principal-agent problem that includes monopolist nonlinear pricing, where a monopolist with known costs seeks a profit-maximizing price menu facing a population of potential consumers whose preferences are known only in the aggregate. For multidimensional spaces of agents and products, Rochet and Choné (Econometrica, 1998) reformulated this problem as a concave maximization over the set of convex functions, by assuming agent preferences combine bilinearity in the product and agent parameters with a quasilinear sensitivity to prices. We characterize solutions to this problem by identifying a dual minimization problem. This duality allows us to reduce the solution of the square example of Rochet–Choné to a novel free boundary problem, giving the first analytical description of an overlooked market segment.

  • articleNo Access

    Uncertainty Handling in Bilevel Optimization for Robust and Reliable Solutions

    Uncertainties in variables and parameters cause optimization problems to move away from globally-optimal and uncertain solutions. Practitioners resort to finding robust and reliable solutions in such situations. Bilevel optimization problems involving a hierarchy of two nested optimization problems have received a growing attention in the recent past due to their relevance in practice. While a number of studies on bilevel solution methodologies and applications are available for a deterministic setup, but studies on uncertainties in bilevel optimization are rare. In this paper, we suggest methodologies for handling uncertainty in both lower and upper level variables that may occur from different practicalities. For the first time, we perform a systematic study demonstrating the effect of uncertainties in each level along with the definition of robustness and reliability in the context of bilevel optimization. The issues and complexities introduced due to such uncertainties are then studied through a number of test cases, for brevity, we only show results on three test cases. Finally, two real-world bilevel problems involving uncertainties in their variables are solved. The study provides foundations and demon- strates viable directions for further research in uncertainty-based bilevel optimization problems.

  • articleOpen Access

    Learning variational models with unrolling and bilevel optimization

    In this paper, we consider the problem of learning variational models in the context of supervised learning via risk minimization. Our goal is to provide a deeper understanding of the two approaches of learning of variational models via bilevel optimization and via algorithm unrolling. The former considers the variational model as a lower level optimization problem below the risk minimization problem, while the latter replaces the lower level optimization problem by an algorithm that solves said problem approximately. Both approaches are used in practice, but unrolling is much simpler from a computational point of view. To analyze and compare the two approaches, we consider a simple toy model, and compute all risks and the respective estimators explicitly. We show that unrolling can be better than the bilevel optimization approach, but also that the performance of unrolling can depend significantly on further parameters, sometimes in unexpected ways: While the stepsize of the unrolled algorithm matters a lot (and learning the stepsize gives a significant improvement), the number of unrolled iterations plays a minor role.

  • articleNo Access

    Optimistic Variants of Single-Objective Bilevel Optimization for Evolutionary Algorithms

    Single-objective bilevel optimization is a specialized form of constraint optimization problems where one of the constraints is an optimization problem itself. These problems are typically non-convex and strongly NP-Hard. Recently, there has been an increased interest from the evolutionary computation community to model bilevel problems due to its applicability in real-world applications for decision-making problems. In this work, a partial nested evolutionary approach with a local heuristic search has been proposed to solve the benchmark problems and have outstanding results. This approach relies on the concept of intermarriage-crossover in search of feasible regions by exploiting information from the constraints. A new variant has also been proposed to the commonly used convergence approaches, i.e., optimistic and pessimistic. It is called an extreme optimistic approach. The experimental results demonstrate the algorithm converges differently to known optimum solutions with the optimistic variants. Optimistic approach also outperforms pessimistic approach. Comparative statistical analysis of our approach with other recently published partial to complete evolutionary approaches demonstrates very competitive results.