Coherence arises from the superposition principle, where it plays a central role in quantum mechanics. In Phys. Rev. Lett.114, 210401 (2015), it has been shown that the freezing phenomenon of quantum correlations beyond entanglement is intimately related to the freezing of quantum coherence (QC). In this paper, we compare the behavior of entanglement and quantum discord with quantum coherence in two different subsystems (optical and mechanical). We use respectively the entanglement of formation (EoF) and the Gaussian quantum discord (GQD) to quantify entanglement and quantum discord. Under thermal noise and optomechanical coupling effects, we show that EoF, GQD and QC behave in the same way. Remarkably, when entanglement vanishes, GQD and QC remain almost unaffected by thermal noise, keeping nonzero values even for high-temperature, which is in concordance with Phys. Rev. Lett.114, 210401 (2015). Also, we find that the coherence associated with the optical subsystem is more robust — against thermal noise — than those of the mechanical subsystem. Our results confirm that optomechanical cavities constitute a powerful resource of QC.