Regarding biocompatibility, toxicity, degradation, and interaction with body cells, the materials as well as fabrication process used for biomedical implants are crucial aspects. Implant materials are chosen in accordance with these criteria. The most recent medical implants are made of materials, i.e. stainless steel, Co–Cr and titanium alloys. Although these conventional implant materials generate hazardous ions and have a stress shield effect in many medical implant situations, the implants must be removed from the body within a certain period of time. In order to avoid the need for implant removal, researchers advise using magnesium metal matrix composite (Mg-MMC) as an implant material. Magnesium composites are subjected to a variety of engineering processes to enhance their mechanical and biocompatibility properties, including the addition of reinforcement, treating the surface, and changing the synthesis processes. The solid-state “friction stir process” is discussed for the fabrication of magnesium metal matrix composites. The influence of various reinforcing materials’, process parameters and reinforcing strategies are summarized in this review study with respect to the microstructure, mechanical characteristics, and corrosion behavior of biodegradable magnesium matrix composites. This study provides an importance of magnesium-based composites for biomedical implants and the degradation behavior reduces the secondary activities to remove implants.