Please login to be able to save your searches and receive alerts for new content matching your search criteria.
As a kind of promising biometric technology, multispectral palmprint recognition methods have attracted increasing attention in security due to their high recognition accuracy and ease of use. It is worth noting that although multispectral palmprint data contains rich complementary information, multispectral palmprint recognition methods are still vulnerable to adversarial attacks. Even if only one image of a spectrum is attacked, it can have a catastrophic impact on the recognition results. Therefore, we propose a robustness-enhanced multispectral palmprint recognition method, including a model interpretability-based adversarial detection module and a robust multispectral fusion module. Inspired by the model interpretation technology, we found there is a large difference between clean palmprint and adversarial examples after CAM visualization. Using visualized images to build an adversarial detector can lead to better detection results. Finally, the weights of clean images and adversarial examples in the fusion layer are dynamically adjusted to obtain the correct recognition results. Experiments have shown that our method can make full use of the image features that are not attacked and can effectively improve the robustness of the model.
Biometric authentication technologies are used for the machine identification of individuals. The human-generated patterns used may be primarily physiological or behavioral, but usually contain elements of both components. Examples include voice, handwriting, face, eye and fingerprint identification. In this paper, we look at these technologies and their applications in general, developing a systematic approach to classifying, analyzing and evaluating them. A general system model is shown and test results for a number of technologies are considered.
Automatic fingerprint identification methods have become the most widely used technology in rapidly growing bioidentification applications. In this paper, different image enhancement approaches presented in the scientific literature are reviewed. Fingerprint verification can be divided into image acquisition, enhancement, feature extraction and matching steps. The enhancement step is needed to improve image quality prior to feature extraction. By far the most common approach relies on the filtering of the fingerprint images with filters adapted to local ridge orientation, but alternative approaches based on Fourier domain processing, direct ridge following and global features also exist. Methods of comparing the performance of enhancement methods are discussed. An example of the performance of different methods is given. Conclusions are made regarding the importance of effective enhancement, especially for noisy or low quality images.
Hair regions represent an important external feature in many tasks involving the processing of human faces. Currently, the task of locating the hair region in a facial image requires manual intervention. In this paper we examine the different aspects of the hair region segmentation problem and develop an automatic system for such a problem. The system incorporates the human knowledge on where the hair is usually located in a facial image. Segmentation is performed via the classification of image pixels and is based on both textural and geometrical features. Experiments have shown that the segmentation results are generally satisfactory and are at least comparable to the performance of manual extraction.
Biometrics is a technology designed to automatically recognize a person together with his/her natural and distinct characteristics. Recently it is in the limelight as an effective authentication method of information. With the great interests in biometrics, the need for reliable evaluation of these technologies increases and the research on objective and quantitative performance estimation methodology is actively investigated. In this paper, we give a comprehensive overview of biometric technology and performance evaluation with more than 100 publications, specially focused on fingerprints. After the thorough review, we propose a promising evaluation method based on affecting factors.
This paper investigates the performance of a bimodal biometric system using fusion of shape and texture. We propose several new hand shape features that can be used to represent the hand shape and improve the performance for hand shape based user authentication. We also demonstrate the usefulness of Discrete Cosine Transform (DCT) coefficients for palmprint authentication. The score level fusion of hand shape and palmprint features using product rule achieves best performance as compared to Max or Sum rule. However the decisions from the Sum, Max, and Product rules can also be combined to further enhance the performance. Thus the fusion of score level decisions, from the multiple strategies, is proposed and investigated. The two hand shapes of an individual are anatomically similar. However, the palmprints from two hands can be combined to further improve performance and is demonstrated in this paper.
In this paper, a face recognition system based on the fusion of two well-known appearance-based algorithms, namely Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), is proposed. Fusion is performed at the decision-level, that is, the outputs of the individual face recognition algorithms are combined. Two main benefits of such fusion are shown. First, the reduction of the dependence on the environmental conditions with respect to the best individual recognizer. Secondly, the overall performance improvement over the best individual recognizer. To this end, fusion is investigated under different environmental conditions, namely, "ideal" conditions, characterized by a very limited variability of environmental parameters, and "real" conditions with large variability of lighting and face expressions.
In this paper, we propose a new supervised learning algorithm, which is named the Generalized Marginal Fisher Analysis (GMFA), to utilize the advantages of the Marginal Fisher Analysis (MFA) and the Generalized Singular Value Decomposition (GSVD) techniques for face recognition. The experimental results on several standard face databases demonstrate that GMFA outperforms LDA/Fisherface, LDA/GSVD and MFA.
Perspiration phenomenon is very significant to detect the liveness of a finger. However, it requires two consecutive fingerprints to notice perspiration, and therefore may not be suitable for real time authentications. Some other methods in the literature need extra hardware to detect liveness. To alleviate these problems, in this paper, to detect liveness a new texture-based method using only the first fingerprint is proposed. It is based on the observation that real and spoof fingerprints exhibit different texture characteristics. Textural measures based on gray level co-occurrence matrix (GLCM) are used to characterize fingerprint texture. This is based on structural, orientation, roughness, smoothness and regularity differences of diverse regions in a fingerprint image. Wavelet energy signature is also used to obtain texture details. Dimensionalities of feature sets are reduced by Sequential Forward Floating Selection (SFFS) method. GLCM texture features and wavelet energy signature are independently tested on three classifiers: neural network, support vector machine and K-nearest neighbor. Finally, two best classifiers are fused using the "Sum Rule''. Fingerprint database consisting of 185 real, 90 Fun-Doh and 150 Gummy fingerprints is created. Multiple combinations of materials are used to create casts and moulds of spoof fingerprints. Experimental results indicate that, the new liveness detection method is very promising, as it needs only one fingerprint and no extra hardware to detect vitality.
It has been demonstrated that fingerprint recognition systems are susceptible to spoofing by presenting a well-duplicated synthetic such as a gummy finger. This paper proposes a novel software-based liveness detection approach using multiple static features. Given a fingerprint image, the static features, including fingerprint coarseness, first-order statistics and intensity-based features, are extracted. Unlike previous methods, the fingerprint coarseness is modeled as multiplicative noise rather than additive noise and is extracted by cepstral analysis. A random forest classifier is employed to select effective features among the extracted features and to differentiate fake from live fingerprints. The proposed method has been evaluated on the standard database provided in the Fingerprint Liveness Detection Competition 2009 (LivDet2009). Compared with other state-of-the-art methods, the proposed method reduces the average classification error rate by more than 20%.
Palm print authentication is a biometric technology to identify a person's identity. In this paper, phase congruency method is used to extract features from palm print ROI images. The phase congruency is an efficient method to extract features at varying illumination condition and the image is invariant to contrast. By applying this method, local phase congruency (LPC), local orientation (LO) and local phase (LP) are extracted individually and fused using score level fusion. To reduce false acceptance rate (FAR), Min-Max threshold range is employed and the proposed method is tested on PolyU database of 7480 images from 374 individuals, with 20 image samples per individual. The proposed system achieves genuine acceptance rate (GAR) of 100% and FAR of 0.65%.
Now-a-days, biometric systems have replaced the password or token based authentication system in many fields to improve the security level. However, biometric system is also vulnerable to security threats. Unlike password based system, biometric templates cannot be replaced if lost or compromised. To deal with the issue of the compromised biometric template, template protection schemes evolved to make it possible to replace the biometric template. Cancelable biometric is such a template protection scheme that replaces a biometric template when the stored template is stolen or lost. It is a feature domain transformation where a distorted version of a biometric template is generated and matched in the transformed domain. This paper presents a review on the state-of-the-art and analysis of different existing methods of biometric based authentication system and cancelable biometric systems along with an elaborate focus on cancelable biometrics in order to show its advantages over the standard biometric systems through some generalized standards and guidelines acquired from the literature. We also proposed a highly secure method for cancelable biometrics using a non-invertible function based on Discrete Cosine Transformation (DCT) and Huffman encoding. We tested and evaluated the proposed novel method for 50 users and achieved good results.
The IT security paradigm evolves from secret-based to biometric identity-based. Biometric identification has gradually become more popular in recent years for handheld devices. Privacy-preserving is a key concern when biometrics is used in authentication systems in the present world today. Nowadays, the declaration of biometric traits has been imposed not only by the government but also by many private entities. There are no proper mechanisms and assurance that biometric traits will be kept safe by such entities. The encryption of biometric traits to avoid privacy attacks is a giant problem. Hence, state-of-the-art safety and security technological solutions must be devised to prevent the loss and misuse of such biometric traits. In this paper, we have identified different cancelable biometrics methods with the possible attacks on the biometric traits and directions on possible countermeasures in order to design a secure and privacy-preserving biometric authentication system. We also proposed a highly secure method for cancelable biometrics using a non-invertible function based on Discrete Cosine Transformation and Index of max hashing. We tested and evaluated the proposed novel method on a standard dataset and achieved good results.
In recent years, biometric authentication systems have remained a hot research topic, as they can recognize or authenticate a person by comparing their data to other biometric data stored in a database. Fingerprints, palm prints, hand vein, finger vein, palm vein, and other anatomic or behavioral features have all been used to develop a variety of biometric approaches. Finger vein recognition (FVR) is a common method of examining the patterns of the finger veins for proper authentication among the various biometrics. Finger vein acquisition, preprocessing, feature extraction, and authentication are all part of the proposed intelligent deep learning-based FVR (IDL-FVR) model. Infrared imaging devices have primarily captured the use of finger veins. Furthermore, a region of interest extraction process is carried out in order to save the finger part. The shark smell optimization algorithm is used to tune the hyperparameters of the bidirectional long–short-term memory model properly. Finally, an authentication process based on Euclidean distance is performed, which compares the features of the current finger vein image to those in the database. The IDL-FVR model surpassed the earlier methods by accomplishing a maximum accuracy of 99.93%. Authentication is successful when the Euclidean distance is small and vice versa.
The digitalization has been challenged with the security and privacy aspects in each and every field. In addition to numerous authentication methods, biometrics has been popularized as it relies on one’s individual behavioral and physical characters. In this context, numerous unimodal and multimodal biometrics have been proposed and tested in the last decade. In this paper, authors have presented a comprehensive survey of the existing biometric systems while highlighting their respective challenges, advantage and limitations. The paper also discusses the present biometric technology market value, its scope, and practical applications in vivid sectors. The goal of this review is to offer a compact outline of various advances in biometrics technology with potential applications using unimodal and multimodal bioinformatics are discussed that would prove to offer a base for any biometric-based future research.
Image classification is a complicated process of classifying an image based on its visual representation. This paper portrays the need for adapting and applying a suitable image enhancement and denoising technique in order to arrive at a successful classification of data captured remotely. Biometric properties that are widely explored today are very important for authentication purposes. Noise may be the result of incorrect vein detection in the accepted image, thus explaining the need for a better development technique. This work provides subjective and objective analysis of the performance of various image enhancement filters in the spatial domain. After performing these pre-processing steps, the vein map and the corresponding vein graph can be easily obtained with minimal extraction steps, in which the appropriate Graph Matching method can be used to evaluate hand vein graphs thus performing the person authentication. The analysis result shows that the image enhancement filter performs better as an image enhancement filter compared to all other filters. Image quality measures (IQMs) are also tabulated for the evaluation of image quality.