Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    Experimental Investigation on the Performance of the Air-based Standing Wave Thermoacoustic Refrigerator using Heat Pipe as Heat Exchangers

    The coefficient of performance (COP) and relative coefficient of performance (COPR) of the standing wave thermoacoustic refrigerator (SWTAR) were investigated. The components of the SWTAR are a resonator tube, a stainless-steel bowl-shaped resonator cone, a commercial loudspeaker, a spiral stack, a cold side heat exchanger (CSHX) with miniature heat pipes (MHPs) and a hot side heat exchanger (HSHX). An operating frequency of 163Hz was used in this study, with an acoustic power (AP) supply of 10, 20 and 30W. Cooling loads were heat provided from a thermoelectric module (TEM) by joining the hot side of the TEM to the copper heat absorber and transferring heat to the CSHX through MHPs. The COP of the SWTAR increased with increasing cooling load. The slopes of the COP curves decreased with increasing AP. The COPR of the SWTAR increased with increasing cooling load until it was approximately 30% of AP.

  • articleNo Access

    Effect of Gas Blockage on the Theoretical Performance of Thermoacoustic Refrigerators

    Thermoacoustic refrigeration is an emerging green, novel and promising alternate technology compared to vapor compression refrigerator systems for domestic cooling. It uses environmentally benign gases like air or helium or the mixture of inert gases as working substances and has no moving parts, no lubrication and no vibration. The cooler is designed and optimized with helium and air as refrigerants operating at 10bar with 3% drive ratio for the temperature difference of 28K and stack diameter of 200mm using linear thermoacoustic theory. In this paper, the effect of gas blockage (porosity) of the spiral-stack heat exchanger system ranging from 45% to 85% on the theoretical performance of the cooler is discussed. The one-third and one-fourth wavelength convergent–divergent resonator designs are optimized with air and helium as working substances, respectively, to improve performance and power density. The optimized coolers show best performance with 85% porosity. The theoretical results are validated with DeltaEC software simulation results. The simulation results show the coefficient of performance and cooling capacity of 0.93 and 219W for helium and of 0.50 and 139W for air, respectively, at the cold heat exchanger temperature of 0C.