Loading [MathJax]/jax/output/CommonHTML/jax.js
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SEARCH GUIDE  Download Search Tip PDF File

  Bestsellers

  • articleNo Access

    ENERGY EXPANSION AND VORTEX LOCATION FOR A TWO-DIMENSIONAL ROTATING BOSE–EINSTEIN CONDENSATE

    We continue the analysis started in [14] on a model describing a two-dimensional rotating Bose–Einstein condensate. This model consists in minimizing under the unit mass constraint, a Gross–Pitaevskii energy defined in ℝ2. In this contribution, we estimate the critical rotational speeds Ωd for having exactly d vortices in the bulk of the condensate and we determine their topological charge and their precise location. Our approach relies on asymptotic energy expansion techniques developed by Serfaty [20–22] for the Ginzburg–Landau energy of superconductivity in the high κ limit.

  • articleNo Access

    Exact breather solutions of repulsive Bose atoms in a one-dimensional harmonic trap

    Bose–Einstein condensates of repulsive Bose atoms in a one-dimensional harmonic trap are investigated within the framework of a mean field theory. We solve the one-dimensional nonlinear Gross–Pitaevskii (GP) equation that describes atomic Bose–Einstein condensates. As a result, we acquire a family of exact breather solutions of the GP equation. We numerically calculate the number density n(z,t,N) of atoms that is associated with these solutions. The first discovery of the calculation is that at the instant of the saddle point, the density profile exhibits a sharp peak with extremely narrow width. The second discovery of the calculation is that in the center of the trap (z=0 m), the number density is a U-shaped function of the time t. The third discovery of the calculation is that the surface plot of the density n(z,t) likes a saddle surface. The fourth discovery of the calculation is that as the number N of atoms increases, the Bose–Einstein condensate in a one-dimensional harmonic trap becomes stabler and stabler.

  • articleNo Access

    SPIN-EVOLUTION OF CONDENSATES WITH FEWER PARTICLES

    The dynamics of spinor Bose–Einstein condensates has been solved via a method of few body theory in which the spin degrees of freedom are treated strictly. Our approach is appropriate to the condensates of several thousands or less atoms. The Bose gas of 87Rd spin-1 atoms, trapped in a spin-independent potential and interacting via spin-dependent force, has been calculated as an example. Rich evolution patterns that are sensitive to the initial states have been found.

  • articleNo Access

    Generation of various classes of entangled states in a two-mode Bose–Einstein condensate under the influence of interatom collisions

    In this paper, we generate some new classes of entangled states of a bimodal Bose–Einstein condensate (BEC), a pair of tunnel-coupled BEC, in the presence of two- and three-body elastic as well as mode-exchange collisions. The Hamiltonian of the considered system is very complicated, moreover, it can be fortunately transformed into a simple form using a two-mode displacement operator. After introducing the general form of the time evolved state, various classes of entangled states are generated. Indeed, the influence of different orders of tunneling strengths on the generated entangled states has been studied. Depending on the tunneling strength constants, two-, three- and four-partite entangled states are generated, all of which are superposition states of macroscopic number of BEC atoms. Considering three-particle collision dramatically changes the generated entangled states. Moreover, in particular cases, the resulted states are non-entangled. Also, we show that tunneling and collisional interactions can be manipulated to generate a pair of atomic entangled coherent states (quasi-Bell states). In addition, it is observed that the degree of entanglement for two-partite entangled states can be tuned via the number of BEC atoms, i.e. the corresponding concurrences tend to their maximum value by increasing the atoms in both modes of system.

  • articleNo Access

    Stueckelberg Bosons as ultralight dark matter candidate

    In this paper, we propose a novel model of scalar field fuzzy dark matter based on Stueckelberg theory. Dark matter is treated as a Bose–Einstein condensate of Stueckelberg particles and the resulting cosmological effects are analyzed. Fits are understood for the density and halo sizes of such particles and comparison with existing models is made. Certain attractive properties of the model are demonstrated and lines for future work are laid out.

  • articleNo Access

    HYDRODYNAMICS OF THE VACUUM

    Hydrodynamics is the appropriate "effective theory" for describing any fluid medium at sufficiently long length scales. This paper treats the vacuum as such a medium and derives the corresponding hydrodynamic equations. Unlike a normal medium the vacuum has no linear sound-wave regime; disturbances always "propagate" nonlinearly. For an "empty vacuum" the hydrodynamic equations are familiar ones (shallow water-wave equations) and they describe an experimentally observed phenomenon — the spreading of a clump of zero-temperature atoms into empty space. The "Higgs vacuum" case is much stranger; pressure and energy density, and hence time and space, exchange roles. The speed of sound is formally infinite, rather than zero as in the empty vacuum. Higher-derivative corrections to the vacuum hydrodynamic equations are also considered. In the empty-vacuum case the corrections are of quantum origin and the post-hydrodynamic description corresponds to the Gross–Pitaevskii equation. We conjecture the form of the post-hydrodynamic corrections in the Higgs case. In the (1+1)-dimensional case the equations possess remarkable "soliton" solutions and appear to constitute a new exactly integrable system.

  • articleNo Access

    Black hole in balance with dark matter

    Equilibrium of a gravitating scalar field inside a black hole compressed to the state of a boson matter, in balance with a longitudinal vector field (dark matter) from outside is considered. Analytical consideration, confirmed numerically, shows that there exist static solutions of Einstein’s equations with arbitrary high total mass of a black hole, where the component of the metric tensor grr(r) changes its sign twice. The balance of the energy-momentum tensors of the scalar field and the longitudinal vector field at the interface ensures the equilibrium of these phases. Considering a gravitating scalar field as an example, the internal structure of a black hole is revealed. Its phase equilibrium with the longitudinal vector field, describing dark matter on the periphery of a galaxy, determines the dependence of the velocity on the plateau of galaxy rotation curves on the mass of a black hole, located in the center of a galaxy.

  • articleNo Access

    THREE-MODE ENTANGLED STATE OF AN ATOMIC BOSE–EINSTEIN CONDENSATE IN A THREE-WELL POTENTIAL

    In this paper, we present a scheme to generate a three-mode entangled state of an atomic Bose–Einstein condensate in a symmetric three-well potential by using controlled atomic elastic collisions. Then, by means of the method for calculating the formation entanglement of two qubits, we obtain the analytic expressions of the residual entanglement of the three-mode BEC entangled state.

  • articleNo Access

    JOSEPHSON DYNAMICS OF A BOSE–EINSTEIN CONDENSATE IN AN ACCELERATED DOUBLE-WELL POTENTIAL

    Motivated by a recent experiment on Bloch oscillation of Bose–Einstein condensates (BEC) in accelerated optical lattices, we consider the Josephson dynamics of a BEC in an accelerated double-well potential. We show that acceleration suppresses coherent population / phase oscillation between the two wells. Accelerating the double-well renders the Josephson coupling energy EJ time-dependent and this emerges as a source of dissipation. This dissipative mechanism helps to stabilize the system. The results are used to interpret a recent experimental result (M. Jona-Lasinio, O. Morsh, M. Cristiani E. Arimonod and C. Menotti, cond-mat / 0501572).

  • articleNo Access

    Investigations of the νT=1 Exciton Condensate

    Recent experiments on quantum Hall bilayers in the vicinity of total filling factor 1 (νT=1) have revealed the possibility of a superfluidic exciton condensate. We report on our experimental work involving the νT=1 exciton condensate in independently contacted bilayer two-dimensional electron systems. We reproduce the previously reported zero bias resonant tunneling peak, a quantized Hall drag resistivity, and in counter-flow configuration, the near vanishing of both ρxx and ρxy resistivity components. At balanced electron densities in the layers, we find for both drag and counter-flow current configurations, thermally activated transport with a monotonic increase of the activation energy for d/ℓB < 1.65 with activation energies up to 0.4 K. In the imbalanced system the activation energies show a striking asymmetry around the balance point, implying that the gap to charge excitations is considerably different in the separate layers that form the bilayer condensate. This indicates that the measured activation energy is neither the binding energy of the excitons, nor their condensation energy. We establish a phase diagram of the excitonic condensate showing the enhancement of this state at slight imbalances.

  • articleNo Access

    SPINOR BEC IN THE LARGE-N LIMIT

    The superfine structure of Bose-Einstein condensate of alkali atoms due to the spin coupling have been investigated in the mean field approximation. In the limit of large number of atoms, we obtained the analytical solution for the fully condensed states and the states with one-atom excited. It was found that the energy of the one-atom excited state could be smaller than the energy of the fully condensed state, even two states have similar total spin.

  • articleNo Access

    MICROSCOPIC APPROACH IN THE DESCRIPTION OF SLOWING OF ELECTROMAGNETIC PULSES IN BEC OF ALKALIS

    We propose a microscopic approach for a description of interaction of the ideal gas of alkali atoms with a weak electromagnetic radiation. The description is constructed in the framework of the Green functions formalism that is based on a new formulation of the second quantization method in case of the bound states (atoms) presence. For a gas in the Bose-condensed (BEC) state we study the dependencies of the propagation velocity and damping rate on the microscopic characteristics of the system. For a condensed dilute gas of sodium atoms we find the conditions of the group velocity reducing for optical pulses tuned up close to the resonant transitions. We also show that the slowing phenomenon can strongly depend on the intensity of the external static magnetic field.

  • articleNo Access

    MODULATIONAL INSTABILITY AND EXACT SOLITON AND PERIODIC SOLUTIONS FOR TWO WEAKLY COUPLED EFFECTIVELY 1D CONDENSATES TRAPPED IN A DOUBLE-WELL POTENTIAL

    The modulational instability of the coupled Gross–Pitaevskii equation (alias nonlinear Schrödinger equation), which describes two Bose–Einstein condensates trapped in an asymmetric double-well potential, is investigated. The nonlinear dispersion relation that relates the frequency and wave number of the modulating perturbations is found and its analysis shows several possibilities for the modulational stability region. Exact soliton and periodic solutions are constructed via elliptic ordinary differential equations.

  • articleNo Access

    VARIATIONAL ANALYSIS OF FLAT-TOP SOLITONS IN BOSE–EINSTEIN CONDENSATES

    Static and dynamic properties of matter-wave solitons in dense Bose–Einstein condensates, where three-body interactions play a significant role, have been studied by a variational approximation (VA) and numerical simulations. For experimentally relevant parameters, matter-wave solitons may acquire a flat-top shape, which suggests employing a super-Gaussian trial function for VA. Comparison of the soliton profiles, predicted by VA and those found from numerical solution of the governing Gross–Pitaevskii equation shows good agreement, thereby validating the proposed approach.

  • articleNo Access

    QUANTUM CORRECTIONS TO THE DYNAMICS OF THE BOSE–EINSTEIN CONDENSATE IN A DOUBLE-WELL POTENTIAL

    The dynamics of the Bose–Einstein condensate (BEC) in a double-well potential is often investigated under the mean-field theory (MFT). This works successfully for large particle numbers with dynamical stability. But for dynamical instabilities, quantum corrections to the MFT becomes important [J. R. Anglin and A. Vardi, Phys. Rev. A64, 013605 (2001)]. Recently the adiabatic dynamics of the double-well BEC is investigated under the MFT in terms of a dark variable [C. Ottaviani et al., Phys. Rev. A81, 043621 (2010)], which generalizes the adiabatic passage techniques in quantum optics to the nonlinear matter-wave case. We give a fully quantized version of it using second-quantization and introduce new correction terms from higher order interactions beyond the on-site interaction, which are interactions between the tunneling particle and the particle in the well and interactions between the tunneling particles. If only the on-site interaction is considered, this reduces to the usual two-mode BEC.

  • articleNo Access

    Regular and chaotic dynamics of a matter-wave soliton near the atomic mirror

    The dynamics of the soliton in a self-attractive Bose–Einstein condensate under the gravity are investigated. First, we apply the inverse scattering method, which gives rise to equation of motion for the center-of-mass coordinate of the soliton. We analyze the amplitude-frequency characteristic for nonlinear resonance. Applying the Krylov–Bogoliubov method for the small parameters the dynamics of soliton on the phase plane are considered. Hamiltonian chaos under the action of the gravity on the Poincaré map are studied.

  • articleNo Access

    The modulation of soliton dynamics in Bose–Einstein condensate by a double square well potential

    By using multiple-scale method, we analytically study the soliton dynamics of Bose–Einstein condensate (BEC) trapped in a double square well potential. It is shown that dark soliton can be stable, which is generated in BEC trapped in a double square well. The amplitude and the width of dark soliton are related to the initial position of the soliton. Within the double square well, because of the confinement of the potential, the amplitude of the dark soliton is larger, while the width of the dark soliton is smaller. Furthermore, we also find that the amplitude and the width of the soliton are closely related to the depth of the double square well. With the increase of the depth, the amplitude of the dark soliton increases remarkably, while the width of the dark soliton decreases slowly.

  • articleNo Access

    Wave packet dynamics for Gross–Pitaevskii equation in one dimension: Dependence on initial conditions

    The propagation of an initially Gaussian wave packet of width Δ0 in Gross–Pitaevskii equation is extensively studied both for attractive and repulsive interactions. It is predicted analytically and verified numerically that for a free particle with attractive interaction, the dynamics of the width is governed by an effective potential which is sensitive to initial conditions. If Δ0 is equal to a corresponding critical width Δc, then the packet will propagate in time with very little change in shape. These are in essence like coherent states. Whereas, if ΔΔc, depending on the nature of the effective potential for chosen Δ0 and the interaction strength (|g|), the width of the packet in course of time, either oscillates with bounded width or will spread like a free particle. For a simple harmonic oscillator (SHO) also, we find that for Δ0 smaller than a critical value, there always exists a coupling strength for which the packet simply oscillates about the mean position without changing its shape, once again providing a resemblance to a coherent state. We also consider the Morse potential, which interpolates between the free particle and the oscillator. For large attractive interactions, the two limiting dynamics (free and simple harmonic) are indeed observed but in the intermediate form of the potential where the nonlinear terms dominate in the dynamics, an initial Gaussian wave packet does not retain its shape. For repulsive interaction, the Gaussian packet always changes shape no matter what the system parameters are.

  • articleNo Access

    Generating entangled state of Bose–Einstein condensate using electromagnetically induced transparency

    We put forward a scheme on how to generate entangled state of Bose–Einstein condensate (BEC) using electromagnetically induced transparency (EIT). It is shown that we can rapidly generate the entangled state in the dynamical process and the entangled state maintained a long time interval. It is also shown that the better entangled state can be generated by decreasing coupling strengths of two classical laser fields, increasing two-photon detuning and total number of atoms.

  • articleNo Access

    Regular and chaotic solutions in BEC for tilted bichromatical optical lattice

    We investigate a Bose–Einstein condensate held in a 1D tilted bichromatical optical lattice potential by constructing its Poincaré sections in phase space. We explore dynamic of the system based on the relations between the system parameters and the solution behaviors. It is demonstrated that the system exhibits shock-wave like dynamic. The power spectrum graphs, bifurcation and Lyapunov exponents of BEC system are also presented.