Please login to be able to save your searches and receive alerts for new content matching your search criteria.
This study was undertaken to find out the suitable breaking wave formulas for computing breaker depth, and corresponding orbital to phase velocity ratio and breaker height converted with linear wave theory. A large amount and wide range of published laboratory data (695 cases collected from 26 sources of published laboratory data) were used to examine and develop the breaker formulas. Examination of some existing formulas indicates that none of them can be used for a wide range of experimental conditions. New breaker formulas were developed based on the re-analysis of the existing formulas. Overall, the new formulas give good predictions over a wide range of experimental conditions.
In this study, we investigated the characteristics of wave breaking on a gravel beach, considering the effects of the groundwater table. Wave breaking in 835 hydraulic model tests is studied. The experimental results of breaking index including the breaking wave height and breaking water depth in a gravel beach are compared with the existing breaking wave formula for computing breaker height and depth. The experimental results indicate that breaking wave heights and water depths are smaller than those in a sandy beach. Further, the higher the groundwater table, the higher breaking wave height and water depth.