This paper presents a numerical simulation method for the brittle rock failure process under compression, by combining the finite element method with micromechanics damage theory. When considering the rock as a homogeneous material, the initial elastic constant of each computational element is the same, but the microcrack distribution in the rock follows a statistical distribution. Consequently, in the loading process, microcrack propagation in each element is different, leading to an inhomogeneous distribution of changes in elastic constant. Under increased loading, this distribution will ultimately be reflected in the macro-failure mode of the rock. To investigate the macromechanics of the rock failure process, the damage variables and effective elastic constants are used to reflect the propagation of microcracks, thus coupling the micromechanics and macromechanics of the rock failure process. Finally, the paper demonstrates the numerical simulation method by simulating the failure of sandstone; these computational results show that the method performs well in simulating the mechanical characteristics of the brittle rock failure process.