Please login to be able to save your searches and receive alerts for new content matching your search criteria.
A system that builds and maintains a dynamic map for a mobile robot is presented. A learning rule associated to each observed landmark is used to compute its robustness. The position of the robot during map construction is estimated by combining sensor readings, motion commands, and the current map state by means of an Extended Kalman Filter. The combination of landmark strength validation and Kalman filtering for map updating and robot position estimation allows for robust learning of moderately dynamic indoor environments.